A practical partitioner for distributed simulations on sparse dynamic

domains using optimal transport

JOEL WRETBORN, Weta FX, Stockholm, Sweden and University of Waterloo, Waterloo, Canada

MARCUS SCHOO, Weta FX, Queenstown, New Zealand
NOH-HOON LEE, Wata FX, Seoul, South Korea

CHRISTOPHER BATTY, University of Waterloo, Waterloo, Canada

ALEXEY STOMAKHIN, Weéta FX, Mililani, United States

This work addresses the challenges of distributing large physics-based sim-
ulations often encountered in the visual effects industry. These simulations,
based on partial differential equations, model complex phenomena such
as free surface liquids, flames, and explosions, and are characterized by
domains whose shapes and topologies evolve rapidly. In this context, we
propose a novel partitioning algorithm employing optimal transport—which
produces a power diagram—and designed to handle a vast variety of sim-
ulation domain shapes undergoing rapid changes over time. Our Power
partitioner ensures an even distribution of computational tasks, reduces
inter-node data exchange, and maintains temporal consistency, all while
being intuitive and artist-friendly. To quantify partitioning quality we in-
troduce two metrics, the surface index and the temporal consistency index,
which we leverage in a range of comparisons on real-world film production
data, showing that our method outperforms the state of the art in a majority
of cases.

CCS Concepts: « Computing methodologies — Distributed computing
methodologies; Computer graphics;

Additional Key Words and Phrases: Partitioning, load balancing, power
diagrams, optimal transport, sparse dynamic domains

ACM Reference Format:

Joel Wretborn, Marcus Schoo, Noh-hoon Lee, Christopher Batty, and Alexey
Stomakhin. 2026. A practical partitioner for distributed simulations on
sparse dynamic domains using optimal transport. ACM Trans. Graph. 45, 2,
Article 20 (January 2026), 14 pages. https://doi.org/10.1145/3787521

1 Introduction

In the context of distributed simulation, the role of a partitioner is
to allocate the computational workload across multiple machines
(a.k.a. nodes or ranks) to maximize performance. Since the exact
computation and communication costs are rarely known up front,
the optimal allocation is typically defined by a set of heuristic objec-
tives, such as ensuring an equitable distribution of computational

Authors’ Contact Information: Joel Wretborn (corresponding author), Weéta FX, Stock-
holm, Sweden and University of Waterloo,Waterloo, Canada; e-mail: joel@wbn.se; Mar-
cus Schoo, Wéta FX, Queenstown, New Zealand; e-mail: mschoo@wetafx.co.nz; Noh-
hoon Lee, Weta FX, Seoul, South Korea; e-mail: nlee@wetafx.co.nz; Christopher Batty,
University of Waterloo, Waterloo, Canada; e-mail: christopher.batty@uwaterloo.ca;
Alexey Stomakhin, Weéta FX, Mililani, USA; e-mail: st.alexey@gmail.com.

909

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License.

© 2026 Copyright held by the owner/author(s).
ACM 0730-0301/2026/01-ART20
https://doi.org/10.1145/3787521

Fig. 1. Fighting kids. For a scene from Avatar: The Way of Water (top) a
sparse particle-in-cell splashing water simulation with surface tension
and viscosity (bottom) [Stomakhin et al. 2023] and peak total memory
consumption of ~500GB has been split into 8 ranks (indicated by col-
ors) using our Power partitioner. Top image from AVATAR: WAY OF WA-
TER (©2022 20th Century Studios, Inc. All rights reserved. Bottom image
(© Weta FX Ltd.

tasks to prevent overburdening individual nodes (a.k.a. load bal-
ancing) and reducing the communication overhead required for
inter-rank data exchange. The inherent conflicts among these goals-
where enhancing one may detract from another—pose significant
challenges.

Our work focuses on simulation applications tailored for the
visual effects (VFX) industry. These simulations are grounded
in physics, utilizing partial differential equations (PDEs) to
model intricate phenomena, such as liquids or smoke. They are
typically discretized using Cartesian grids or hybrid particle-in-cell
methods. The focus is placed primarily on the aesthetic quality
and visual richness of the output, capable of captivating audiences
in film, gaming, or other media, rather than raw computational
accuracy. Consequently, practitioners tend to employ computa-
tionally less heavy lower-order methods compared with those

ACM Trans. Graph., Vol. 45, No. 2, Article 20. Publication date: January 2026.

https://orcid.org/0000-0002-6375-4315
https://orcid.org/0009-0009-7880-5179
https://orcid.org/0000-0002-1126-7419
https://orcid.org/0000-0003-3830-7772
https://orcid.org/0000-0002-5081-9108
https://doi.org/10.1145/3787521
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3787521

20:2 « J. Wretborn et al.

used in traditional engineering applications. As simulations
scale to higher resolutions, practitioners reach for distributed
techniques when a simulation no longer fits in working memory
(typically ~256-512 GB).

Since the defining feature of VFX simulations is the emphasis
on visually striking and dynamic outputs, the simulation domains
tend to exhibit highly dynamic behavior, characterized by sparsely
distributed topologies that evolve rapidly over time. Such rapid
evolution places additional importance on minimizing the commu-
nication costs specifically associated with restructuring the domain
from one frame to the next, as opposed to the costs of ghost trans-
fers of adjacent neighbor data in a statically partitioned domain.

Below we give a concise summary of the partitioner requirements
we identified to meet the unique demands of our application.

Equitable work distribution. The workload assigned to each
rank should be as uniform as possible. Since accurately predicting
the actual computational effort up front is not straightforward,
many approaches rely on approximate or proxy metrics, such as
the number of grid cells (a.k.a. voxels) or particles assigned to a
given rank, which we adopt in the current work.

Minimized ghost transfers. In PDE-based simulations, inter-
rank ghost data transfers are governed by spatial locality: transfers
occur at the border layers, where data regions from different ranks
meet spatially. Minimizing the border size reduces the amount of
data exchanged, lowering overhead and improving efficiency.

Temporal coherence. A critical consideration in the VFX con-
text is the need for temporal coherence, which entails minimizing
substantial shifts in the distribution of computational work between
consecutive simulation frames, thereby curtailing the volume of
inter-rank data movement.

Artist friendliness. The partitioner must prioritize simplic-
ity, transparency, and reliability, ensuring that artists in the visual
effects industry can focus on creativity rather than technical ad-
justments. It should operate seamlessly out of the box, requiring
no manual tuning or deep understanding of distributed systems.

In order to understand the shortcomings of current state-of-
the-art partitioning algorithms for sparse dynamic domains,
to be discussed in Section 3, we first present in Section 2 the
mathematical underpinnings of our domain structure. To tackle
the outlined challenges we propose a novel partitioning algorithm
based on regularized optimal transport. It maps buckets (= units of
computational work, see Section 2) to ranks, modeled as points in
the simulation world space, by minimizing the total transportation
distance of work. The resulting partitioning turns out to be a
power diagram with rank positions as sites, and in combination
with Lloyd’s algorithm [Lloyd 1982] we can ensure a balanced
distribution and minimal neighbor transfers while maintaining
temporal coherence without any user intervention. We introduce
this Power partitioner in Section 4, which we compare to existing
methods in Sections 5 and 6.

2 Sparse Domains and Partitioning

Sparse grids are ubiquitous in computer graphics and VFX appli-
cations [Bojsen-Hansen et al. 2021; Bridson 2003; Museth 2013;
Setaluri et al. 2014]. Instead of allocating a full tensor-product (or
dense) grid, sparse grids employ a hierarchical structure that selec-
tively includes grid points based on their proximity to the region of
interest, drastically reducing the memory required while maintain-

ACM Trans. Graph., Vol. 45, No. 2, Article 20. Publication date: January 2026.

9909 o

)53
Foul o1 Ke)

- [e)

i
o O

) Q
<)

Fig. 2. Sparse grid domain. An illustration of a 2D sparse grid simulation
domain, composed of blocks / buckets (large squares), each of which con-
tains 4 X 4 voxels (small squares) and, in this example, some particles (small
circles). The coloring depicts a partitioning of the buckets into 2 ranks.
© Wata FX Ltd.

ing sufficient spatial coverage. A popular implementation choice,
especially for uniform grids, is a sparse-block structure [Lesser
et al. 2022; McAdams et al. 2011; Wang et al. 2005; Zhu et al. 2010],
where the grid domain is represented as an array of axis-aligned
non-overlapping dense cubic blocks of voxels (see Figure 2), which
we adopt in this work. In addition to representing a unit of min-
imal spatial coverage, such blocks simultaneously double as the
units of parallel work. Smaller blocks allow for precise coverage
of detailed regions of interest and enhanced parallelism, but han-
dling the resulting large number of blocks can become cumbersome.
Conversely, larger blocks simplify management by reducing their
total count, though they may not exactly conform to the simula-
tion domain causing unnecessary padding, and are also harder to
partition evenly. The literature suggests that the optimal block size
lies between 4 X 4 x 4 and 8 x 8 x 8 grid voxels [Lesser et al. 2022;
McAdams et al. 2011; Zhu et al. 2010].

Below we give formal definitions related to our sparse domain
representation. We will assume that our simulations happen in 3D
space, and will set d = 3 unless stated otherwise.

Definition 2.1. A region of interest is a time-varying subset
Q; ¢ R? with t € R representing time, where we wish to
track the evolution of some (discretized) functions representing
visual, physical, or geometric features, such as smoke density,
temperature, liquid signed distance fields, particles, and/or other
properties.

Definition 2.2. A bucket b is a half-open, cubic, axis-aligned re-
gion of space RY, which will represent a block in our sparse-block
grid structure. The buckets are assumed to be chosen such that the
set of all buckets B gives an overlap-free tiling of the whole of R,

Definition 2.3. A bucketization is a function 8 : R¢ — B which
maps any point x € R? to the bucket b € B that contains it.

Definition 2.4. A neighborhood function N : B — 2B defines
the list of neighboring buckets!, for any bucket b € B. In gen-
eral the neighborhood concept does not necessarily imply prox-
imity in the physical space, but rather describes the interaction
pattern within the simulated system at hand, which may become

12B is the set of all subsets of B.

A practical partitioner for distributed simulations on sparse dynamic domains using optimal transport « 20:3

rather complicated for long range forces. In the case of PDEs,
however, the neighborhood corresponds to immediately adjacent
buckets.

Definition 2.5. A domain description (8, N) is a pairing of a buck-
etization and a neighborhood function.

Definition 2.6. A uniform grid domain description is defined by
choosing a bucket size A > 0 and setting

Ba(x) = 3| 1)

which is to say that the set B is composed of cubic voxels of a
uniform grid with spacing A. The neighborhood function considers
two buckets to be neighbors if the Euclidean distance between them
is zero, meaning their closures share a face, an edge, or a corner.

Definition 2.7. A bucket subset is a (finite) collection S € 2B. The
simulation domain, which is the area where the volumetric data is
allocated for computation, is specified via a bucket subset, which we
will refer to as the (simulation) domain subset Dy = {Uxeq, B(x)}.

Definition 2.8. A padding function 7 : 28 — 25 is defined as
T(5) = (b UN(b).b € 5}, @

and dilates a given domain subset by a single layer of buckets.

Definition 2.9. A partitioning is a function that maps buckets of a
given bucket subset S to ranks, P : S — [R], where [R] = {0...R—
1} and R is the total number of ranks. The partition corresponding
to rank r is the subset of buckets that has been assigned to that rank,
specifically P, = {b € S : P(b) = r}.If not otherwise stated we will
assume that a partitioning is computed on the domain subset, i.e.,
S = D;. We refer to the algorithm used to produce a partitioning
of a bucket subset S as a partitioner P, so that P(S) = P.

Given a measure of the computational work W} per bucket b
the computational work for the partition P, associated with rank
ris Wy = ¥ pep, Wp. We are specifically interested in partitioners
that would (1) produce the minimal variation of work W, across all
ranks, (2) for each partition P,, minimize the number of neighbor
buckets |7°(P,) \ P N D;| that do not belong to it, and (3) keep
partitions coherent across time as D, evolves.

Remark. The definition of the domain description in Definition2.5
admits more general shapes (e.g., an adaptive octree) than the
uniform grid we define with Equation (1), without any required
changes to the partitioner algorithm we outline in Section 4.

3 Existing Methods

There are a number of partitioners available in the literature.

Graph-based partitioners. Graph-based partitioners model the
computational domain as a graph: the vertices represent compu-
tational units—such as buckets in our sparse grid structure—while
edges encode spatial dependency relationships derived from the
neighborhood function N. The partitioning problem is then cast
as a graph-cut optimization task, where the goal is to minimize
the number of edges connecting different ranks while balancing
the computational load, represented by vertex weights W;. The
widely adopted METIS [Karypis and Kumar 1998] and ParMETIS

SFC

Power

P(s") P(s?)
Fig. 3. Partitioning consistency. Left column: Visualizations of SFC and
Power partitionings on a crescent-shaped domain S! for 4 ranks. Middle
column: A single new bucket b is added, yielding S2 = S U b, and the
domain is re-partitioned. Right column: The difference between P(S!) and
P(S?) is visualized by marking buckets that changed ranks white. The
significant shift in the SFC partitioning is due to the change in the domain
bounds. (©) Weéta FX Ltd.

Difference

[Schloegel et al. 2003] employ multilevel recursive bisection or
k-way partitioning strategies to achieve these aims.

For sparse and irregular domain topologies these methods pro-
duce close-to-optimal cuts. However, small changes in the domain
subset often cause drastic changes in the partitioning, resulting in
low temporal coherence across frames. This sensitivity arises be-
cause graph-based methods operate purely on connectivity and are
largely oblivious to the domain’s world-space geometry, making it
difficult for them to preserve spatial consistency over time. In VFX
applications, where the domain subset can change substantially
between frames, our testing shows poor performance for these
kinds of methods (see Section 5).

Space filling curve (SFC) methods. A number of methods use
geometric heuristics that lead to reasonable approximations of
optimal partitionings. SFCs [Borrell et al. 2020; Tsuzuki and Aoki
2016], such as the Hilbert curve or Morton (a.k.a. Z-order) curve,
provide a computationally efficient way to map multi-dimensional
data into a one-dimensional sequence. A popular claim is that
this mapping preserves locality, which means nearby points in
the original multi-dimensional space stay close together in the 1D
ordering. This in turn implies that when dividing work (i.e., buckets)
among ranks using this 1D ordering, the communication overhead
is minimized. Alas, the starting claim above is only approximate:
while small, there is a nonzero chance of encountering non-local
patterns in the mapping, occurring in places where different coils
of an SFC meet spatially. In practice, this leads to SFC partitioners
producing visually prominent artefacts that compromise locality.
Additionally, the 1D bucket ordering varies rapidly with changes in
the bounding box of the domain subset, leading to poor temporal
coherence properties for domains with fast-changing topologies.

To illustrate the last two points consider Figure 3 (top-left) where
a crescent-shaped domain is partitioned with a Hilbert SFC (see
Section 5 for algorithmic details). The purple partition has buckets

ACM Trans. Graph., Vol. 45, No. 2, Article 20. Publication date: January 2026.

20:4 « J. Wretborn et al.

mainly located in the top left, but also a few scattered buckets
at the bottom, demonstrating poor locality. Then, when a single
bucket is introduced outside of the current domain (Figure 3, top-
middle), the domain subset bounding box changes, causing a drastic
change in the partitioning. Although seemingly contrived, this case
is remarkably common in VFX simulations: a water splash can send
single droplets flying into the air, causing temporally incoherent
partitions.

Voronoi methods. Voronoi methods (e.g., Ref. [Koradi et al. 2000])
are intuitive and powerful, aligning well with our goals of locality
and work balance. However, traditional implementations, such as
standard centroidal Voronoi tessellation, face challenges in dynamic
VFX simulations. Constructing explicit Voronoi meshes, as done by
Fu et al. [2017], adds computational overhead and implementation
complexity as buckets must be classified into cells. Importantly,
when W}, is spatially nonuniform, load balancing becomes increas-
ingly inaccurate since Voronoi partitions depend only on geometry
and cannot adapt cell sizes to heterogeneous work distributions.
It may also not be possible to directly partition a domain of an
arbitrary shape, instead requiring embedding into a convex hull,
leading to even more overhead and meshes with overly stretched
elements.

Our Power partitioner was heavily inspired by and is an improve-
ment over Voronoi methods. It produces Voronoi-like structures,
hence preserving all of the desired locality properties, while also
being capable of equally partitioning domains of arbitrary shapes
and spatially varying work functions. Conceptually, the Power par-
titioner occupies a middle ground between graph-based and purely
geometric heuristic methods. The regularized optimal transport
formulation (Section 4.1) can be viewed as a continuous analogue
of graph partitioning, replacing the discrete edge-cut minimiza-
tion with an optimization based on world-space distances between
ranks and vertices. However, it does not explicitly minimize com-
munication volume, but instead offers a practical balance between
load equality, spatial compactness, and temporal coherence. Thus
for domains with stable connectivity, graph-based methods can
achieve lower ghost communication overhead, albeit with reduced
temporal stability. Table 1 gives a qualitative summary of how
SFCs (Hilbert curve), graph-based methods (METIS), and our Power
partitioner score on different partitioning properties. We evaluate
these partitioners more quantitatively in Section 5.

There exist other partitioning strategies best-suited to simulation
domains that are compact, box-shaped, or essentially static. Given
our stated objectives, we explicitly do not consider methods that are
tailored to such limited domain shapes—for example static partition-
ing techniques [Irving et al. 2006; Wang et al. 2020] or axis-aligned
plane-cutting techniques [Qiu et al. 2022; Surmin et al. 2015]. Al-
though plane-cutting has been commonly used in VFX applications
([Bailey et al. 2015; Flores and Horsley 2009; Lait 2016]), it only
works well when there is a “preferred” simulation direction. For
highly dynamic simulations, like the fluid simulation highlighted in
Figure 1, such a direction is not always possible to specify. Addition-
ally, plane-cutting techniques often require the simulation operator
to specify up front the number of cutting planes as well as their
directions, which conflicts with our previously stated goal of artist
friendliness. Flexible recursive variants of plane-cutting (analogous

ACM Trans. Graph., Vol. 45, No. 2, Article 20. Publication date: January 2026.

Table 1. Qualitative Partitioner Comparison

Partitioner Speed Work balance Locality Temporal

Graph-based *k Hkkk *hokk *

Hilbert curve sk Hok ok *k *k
Power diagram *k ko *okk HokAkok

to kd-trees) are classical in computational fluid dynamics [Berger
and Bokhari 1987], under the names orthogonal recursive bisec-
tion or recursive coordinate bisection; however, such methods are
known to produce much lower quality partitions than the modern
graph-based schemes discussed earlier [Bruaset and Tveito 2005].

Another example is the speculative partitioning technique by
Shah et al. [2018], who account for the temporal aspect of partition-
ing by predicting the future region of interest via a low-resolution
simulation run concurrently with the main simulation. Since many
of the features we are interested in are scale-dependent—for ex-
ample surface tension effects (Figure 1) or chemical combustion
(Figure 9)—a low-resolution simulation is seldom predictive of the
actual future simulation state.

We emphasize that our approach harmonizes well with general
load-balancing frameworks, such as those of Kale and Krishnan
[1993] and Pearce et al. [2012], which utilize on-the-fly self-profiling
tools to further enhance the partitioning quality with real-time data;
however, we consider those techniques to be complementary to the
partitioner presented here and outside the scope of our work.

Optimal transport in graphics. We end this section by highlight-
ing the increased use of optimal transport across computer graphics.
One of the earliest examples is the work of de Goes et al. [2012], who
showed how to use optimal transport for blue noise sampling. Since
then there has been a variety of work applying optimal transport
to discrete domains ([Mandad et al. 2017; Solomon 2018; Solomon
et al. 2015]) and to physics simulation ([de Goes et al. 2015; Qu et al.
2022, 2023; Wretborn et al. 2025; Zhai et al. 2020]).

4 The Power Partitioner

The need for a new partitioner arose when we observed SFC par-
titionings on very dynamic scenes (e.g., Figure 1) or sparse non-
convex domains (e.g., the “River” shape in Figure 10), where in-
dividual rank partitions would visibly flicker across neighboring
frames or exhibit severe non-locality. See also the supplementary
video.

Our goal was to develop a new technique that would improve
on both the locality and temporal coherence of existing methods.
To that end, we introduce a novel partitioner based on regularized
optimal transport and power diagrams, hence the name “Power
partitioner”. This approach produces geometric structures, similar
to Voronoi cells, that can be used to create high quality partitionings,
while also being computationally efficient. In this section we first
describe the application of regularized optimal transport to our
problem domain (Section 4.1), and then define our partitioner and
discuss implementation considerations (Section 4.2).

4.1 Regularized Power Diagrams

We will leverage regularized power diagrams as our spatial heuris-
tic of choice, which can be viewed through the lens of optimal

A practical partitioner for distributed simulations on sparse dynamic domains using optimal transport « 20:5

transport. For a primer on optimal transport we recommend the
review by Peyré and Cuturi [2019].

We use x;, € R? to denote the fixed reference position assigned
to a given bucket b € B, and similarly associate a position x, € R?
with each rank r € [R]. In summation expressions, we will omit
indicating set membership for brevity where the scope is obvious
from context, e.g.,), will imply summation over all b € D;. We
will also omit the subscript t when the time is irrelevant or clear
from context. Let C : [R] X D — R, be the so-called cost function
where each entry C,p is the squared distance’ between a rank
and a bucket, C,p = ||x, — x3||%. We define the desired workload
per rank as L =), Wp/R. Then there exists an optimal coupling
T : [R] X D — R, that satisfies

T = argmin Z T,5Crp — eH(T), (3)
T r.b
subject to Z T,p =LVr, (4)
b
DTy = W Vb, ()

where ¢ € R, is a user-defined regularization parameter and # (T)
is the discrete entropy, H(T) = — 3, , Tp (log T)p — 1) .

The coupling matrix T represents a joint assignment of work
between ranks and buckets, encoding R X |D| unknowns. These are
constrained by prescribed marginal distributions: each rank must
receive a total workload of L, while each bucket’s entire work W,
must be assigned across the ranks.® The objective function balances
the transportation cost },;, T,5C,p—favoring proximity between
ranks and buckets—with an entropic regularization term ¢H (T).
This regularization induces strict convexity, ensuring the existence
and uniqueness of the optimal solution T, in contrast to unregu-
larized optimal transport, where multiple optima may exist. This
uniqueness is a desirable feature for our problem: it makes parti-
tioning more temporally stable, because it reduces the likelihood of
toggling between quite distinct but equal-quality solutions as the
domain evolves.

The geometric interpretation of T is an approximate power dia-
gram with rank positions as sites and diffuse edges/faces that turn
progressively sharper as ¢ — 0; see the top row in Figure 4. Notably,
¢ has units of length and can be viewed as a characteristic width
of the diffuse transitions between power cells. The work center of
mass for a rank can be computed via the power kernel [Qu et al.
2022, Equation (6)] as

1
¢ = I Z T,pxp Vr. (6)
b

The specific choice of the entropic term given in Equation (3)
implies that the solution takes the form [Peyré and Cuturi 2019,
Prop. 4.3]

T, = gre"Crb/¢qy Vr, b, (7)
for unknown variables ¢, and qp, defined for each rank and bucket
separately. This reduces the number of unknowns to R+|D|, making
computing a solution computationally tractable.

2The squared 2-norm will create power cells, which are attractive for their spatial com-
pactness, but other cost functions can be chosen [Peyré and Cuturi 2019, Section 5.2].
3We temporarily assume here that W}, (i.e., one bucket’s work) may be split among
multiple ranks.

AAAA
ARARAA

£
Fig. 4. Effect of regularization on Power partitioning. The coupling T (top)
and resulting partitioning P (bottom) is visualized for varying € on a non-
convex domain. Ranks are drawn as circles with color y,. In the top row,
the color is computed on buckets as yp = (X, ¥+ Trp) /||Zr y,T,b”Z. In
the bottom row the color is computed as yp = yp(p). © Weta FX Ltd.

4.1.1 Sinkhorn Iterations. Equation (7) allows for an efficient
solution procedure to find T by performing so-called Sinkhorn itera-
tions. Let s = 0, 1, ... be an incrementing index denoting the current
iteration. We perform interleaved projections by substituting Equa-
tion (7) into the load and work constraints Equations (4)-(5) as

L

s+1
==V 8
9y Zb e*Crb/Sq;7 ()
A
s+1
=————— Vb 9
b T e Cnleg ®)

Equations (8)—(9) can each be viewed as one matrix-vector multi-
plication and one vector-vector componentwise division, and thus
a single Sinkhorn iteration has complexity O(R|D|). The iterations
will converge linearly, and as stopping criterion we use the largest
relative deviation from Equation (4),

2 T}y

max -1

r

< Tsinkhorns (10)

for some user defined threshold zinkhorn- We construct T® by evalu-
ating Equation (7) using g; and g; . Although C can be computed on
the fly from the rank and bucket positions, we found it beneficial

to precompute e~¢/% and store it in a R x |D| matrix.

4.1.2 Log-Domain Sinkhorn Iterations. Smaller regularization
parameters ¢ produce sharper power diagrams but lead to poor
convergence [Peyré and Cuturi 2019, Remark 4.7]; in particular,
the calculation C/¢ may overflow numerically. We address this by
detecting when overflow is likely to occur (Section 4.2.1), in which
case we instead use the following log-domain computations,

s+1

P =pl+elogl + smoolt,hmin (Crp —p; — pjp€) Vr, (11)

Pyt = pj + elog Wy, + smoothmin (C,p, — pj, — pi*',¢) Vb, (12)

for the log-domain Sinkhorn variables p, = ¢log gy, * € {r,b} and
smooth minimum function

: - _ —yYx/e
smoolhmln(y*, €) elog Z*: e . (13)

Equations (11)—(12) are the log-domain equivalents of Equations (8)-
(9) and are stable for arbitrary ¢ > 0 given a good initial guess [Peyré
and Cuturi 2019, Remark 4.23]; we use p? = 0 and pg = min, C,p

ACM Trans. Graph., Vol. 45, No. 2, Article 20. Publication date: January 2026.

20:6 + J. Wretborn et al.

ALGORITHM 1: Regularized Power Partitioner

Input: Wy, xp, X,
Output: P, x,

(optionally coarsen; Sections 4.2.4, 4.2.5)

L« Yy Wp/R
for Lloyd iteration [= 1,2,... do
Clrb — |lxr — xp H% (compute cost function; Section 4.1)
(Section 4.2.2)
(Sinkhorn iterations; Sections 4.1, 4.2.1)

(compute partition, Equation (15))

Compute el
Compute T!

1
P — arginax T,,

Xy — Cr (update rank centroids, Equation (6))
if max Ap (r) < Tjpaq then (Section 4.2.3)
r
break
end if
end for

which guarantee that the iterations do not overflow. The coupling
can be reconstructed via

pr+rp=Crp

T,p=e ¢ Vrb, (14)

which is the log-domain equivalent of Equation (7).

4.2 A Partitioner from Regularized Power Diagrams
Equipped with the optimal coupling T (Equations (3)—(5)) we define
the partitioning as

P (b) = argmax T,p. (15)

Equation (15) assigns each bucket to the single rank with which it is
coupled most, and since % is a function on D it is a valid partitioning
according to Definition 2.9. However, Equation (15) converts the
optimal coupling from a continuous to a discrete function, and as
such the constraints Equations (4)-(5) may no longer be satisfied.
Let T? : [R] x D — R, be the function that evaluates to Wj, if
r = P(b) and 0 otherwise, and consider each equation with respect
to T?.

By construction };, TZ; = W, since each bucket is assigned to
exactly one rank; thus T? satisfies Equation (5). The rank load equal-
ity constraint, Equation (4), is in general not satisfied,)’ Tf; #1L,
because the “rounding” induced by Equation (15) can cause signifi-
cant deviations of T# from T. This is clearly true for sufficiently
large values of ¢, as in the limit ¢ — co the optimal coupling T is the
maximal entropy solution where every bucket is equally coupled
to every rank. In practice the errors become significant when the
ratio C/e gets small. Thus, we prefer partitionings where ranks
are located close to the center of their respective power cell, and a
small regularization parameter. For the former, we adopt Lloyd’s
algorithm [Lloyd 1982] and iteratively move rank sites to the work
center of mass (Equation (6)) in an outer loop. The resulting full
partitioning algorithm is outlined in Algorithm 1. The effect of the
regularization parameter on the partitioning of Equation (15) is
visualized in the bottom row of Figure 4.

4.2.1 Check for Overflow. Numerical overflows in C/¢ are prob-
lematic when—due to the exponentiation in Equation (7)—they
cause all T,p = 0 for a particular bucket b, rendering Equation (15)
meaningless. The element in C that is most likely to induce such
scenarios is determined by the bucket that is furthest away from
its closest rank, since such a bucket is comparatively far from all

ACM Trans. Graph., Vol. 45, No. 2, Article 20. Publication date: January 2026.

Lloyd iteration [[1]
Fig. 5. Power partitioner convergence plot. We study the convergence of
the Lloyd iteration loop in Algorithm 1. The domain subset is a box with
|_\5/ 10*R | buckets on all sides to keep the size of each partition P, roughly
equal. We set 7jp54 = 0 to ensure the break in Algorithm 1 is never triggered
and we vary the number of ranks R = {2, 4, 8,16,32}. (© Weéta FX Ltd.

ranks. We denote that value

T(C) = max (mrin Crb) . (16)
Numerical issues are likely if e T(€)/% is below the precision of the
floating point type. We use 64-bit precision for all of our operations
and fall back to log-domain Sinkhorn iterations if e ' (€)/¢ < 10712
(Equations (11)—(12), (14)), otherwise we use standard Sinkhorn
iterations (Equations (7)-(9)).

Regular Sinkhorn iterations are significantly faster to compute
than their log-domain counterparts due to the per-component expo-
nentiation in Equation (13), so keeping the above threshold small is
beneficial. We have chosen the threshold value 102 conservatively
and have not experienced convergence issues in any of our testing,
indicating that it may be possible to reduce the threshold further.

4.2.2 Choosing the Regularization Parameter. As seen previously,
large values of the regularization parameter ¢ tend to produce sub-
optimal load balancing, while lower ones may lead to numerical
overflows and reduced performance of the Sinkhorn algorithm. To
work around these shortcomings, we propose to gradually decrease
¢ with Lloyd iterations. Specifically, we define the regularization
parameter ¢ for the first Lloyd iteration [= 1 in terms of T’ (Equa-
tion (16)), and then successively lower it by a fixed factor € (0, 1)
so that ¢! = I'(C')/E and ¢/ = pe!~! for some user-defined pa-
rameter E € R,. This way we start by making crude estimates of
the rank positions, moving them into the ballpark of the solution
quickly, and then refine them to achieve better load balancing with
more precise iterations at lower values of e. We found E = 10 and
n = 2/3 to work well in practice, and used those values for all of
our examples.

4.2.3 Partitioner Convergence Criteria. We stop the Lloyd iter-
ation loop when a target load index 70,4 has been reached (see
Section 5.1 for an explanation of our partitioning metrics). All our
examples use 7jo,4 = 0.01, which typically takes 1-3 Lloyd itera-
tions to reach. We test the convergence to equal load between ranks
of our method in Figure 5.

4.2.4 Initialization. We estimate the computational work Wj
following Qiu et al. [2022]. For hybrid particle-in-cell simulations
(Figures 1 and 6; all other examples are purely volumetric), we set
Wp, equal to the number of particles in the bucket; for volumetric
simulations, we set a constant workload W}, = 1 for all buckets.

A practical partitioner for distributed simulations on sparse dynamic domains using optimal transport « 20:7

ALGORITHM 2: Partitioner Timestep Overview

Input: D?, P

. DO
Output: D, .,

Pr — IP’(D([)) (partition domain; Algorithm 1)
for algorithm in {advection, emission, rasterization, ...} do
D! algorithm(D?)

Extend ¥, via Equation (17) (assign nearest rank; Section 4.2.6)

Bucket positions xp, are determined by picking a random (but
temporally constant) position within the extent of the bucket. For
domains where the optimal coupling T produces (close to) axis-
aligned power cells for a given rank r, we have found this strategy
beneficial, as opposed to, e.g., choosing x} to be the center of each
bucket. Using bucket centers, all buckets b along the border of
such a power cell r would have T, roughly equal to each other,
making it difficult for individual buckets to change rank and thus
causing poor convergence of Algorithm 1. The added positional
randomness helps avoid this kind of degeneracies.

Rank positions x, are initialized on the first simulation frame by
picking a random xjp, in the domain subset. For subsequent frames,
we “warm-start” the Lloyd iterations by using the rank positions of
the previous timestep, which facilitates temporal coherence across
timesteps.

4.2.5 Coarsening for Efficiency. Partitioning domains with a
large number of buckets can be time consuming, and it is often
possible to reduce the problem complexity by coarsening D without
adversely affecting the partitioning quality. We present one such
coarsening procedure here, by introducing a coarser uniform grid
(Equation (1)), Ba guee (%), for Acoarse = A-k. Here, k (typically 2 or 3)
merges k> fine buckets into one coarse unit, with k chosen to target a
manageable bucket count. For example, we target | D°**¢| ~ 64 000
for the coarsened domain in Figure 10. For each coarse bucket, we
sum the work from its fine constituents and average their positions,
and store these as new sets {W;*"*°} and {x;°*"*}. The coarsened
sets are used as inputs to Algorithm 1, and the resulting partitioning
is mapped back to the original bucket structure.

4.2.6 Managing Dynamic Domains. Our partitioner is intended
to be run once per timestep. In practice, however, the domain subset
may also change at any point during the computation of a single
timestep. When and how depends on the particular simulation type
and scenario; for our fluid simulator changes may happen during
algorithms for emission, advection, or rasterization of boundaries.

Consider a domain subset D! and associated partitioning P, =
P(D?) for a particular simulation time ¢, where the superscript °
indicates that D! is the initial domain subset for that time t. An
algorithm may then change the domain subset by removing or
adding buckets, creating D}, D?, and so on. It is too costly to fully
re-partition every time a change in the domain happens; instead, as-
suming such incremental changes are modest, we take a heuristic ap-
proach and assign any new bucket to the rank to which it is closest,

P;(b) = argmin ||x, — xp||,, for b ¢ DY. (17)
r

Removing buckets from DY can be done without any change to the
partitioning, since a partitioning on DY is also a valid partitioning

SFC METIS

Power

Runtime [s]

ol METIS
0.2 B SFC
B Power

o 1]

v[1]

T T

10 60 110 160 210 260

Frame [1]
Fig. 6. Boat wake. A hybrid particle-in-cell fluid simulation around a mov-

ing boat is run on 4 machines, the domain expanding as the simulation
progresses. Simulated particles are colored according to their rank for the
different partitioners; on the last frame there are 169M particles in total
(top). Runtime: METIS was more than 3X slower than Power due its tem-
poral incoherence and the plot is clipped by the partitioning visualizations.
Surface index: max, o is drawn as a solid line. The shaded colored region
represents [min, o, max, o]. (©) Wéta FX Ltd.

on any subset S C D?. At the next simulation time ¢ + At we ini-
tialize the domain subset with the last domain subset from the pre-
vious time, D? AL T Dia“, and compute a new partitioning Priar =

]P’(D? .az)- An overview of this procedure is shown in Algorithm 2.

5 Evaluation

The end goal in designing a good partitioner is to reduce the run-
times for a certain class of simulations. Performance losses may
come from multiple sources, such as sub-optimal locality, poor
temporal coherency, or the cost of re-partitioning. In addition, the
quality of partitionings derived from spatial heuristics (like SFC
and our Power partitioner) depends on the geometric shape of the
domain, emphasizing the need to evaluate partitioners on domains
representative of the application. Consequently, we introduce a
number of partitioning metrics in Section 5.1 which we evaluate
and relate to runtimes on a few simulation scenarios typical of VFX
in Section 5.3. Then, to ensure the domain shapes were not cherry-
picked, we also perform comparisons of the metrics with different
partitioners on a large corpus of pre-computed fluid simulation
cache sequences.

5.1 Metrics

To evaluate the effectiveness of partitioners in satisfying our goals,
we define several quantitative metrics.

Load index. Following the equitable work objective, we would
like each rank to receive 1/R of the total workload }’;, Wj, which

ACM Trans. Graph., Vol. 45, No. 2, Article 20. Publication date: January 2026.

20:8 « J. Wretborn et al.

Table 2. Dynamic Averages. We Present the Data for all Dynamic Domain Experiments. Surface Index is Presented by Computing max, o for Each Frame,
Averaged Across All Frames. Temporal Index v is Averaged Across All Frames. Runtime is the Total Runtime for the Simulation. Values in Parenthesis (-) are
Computed by Dividing with the Same Metric for the Power Partitioner. Performance Metrics for these Simulations are Summarized in Table 5

SFC METIS Power (ours)
R |Dy| o v Runtime o v Runtime o v Runtime
Boat wake 4 [104K, 671K] | 0.120 (1.27x) 0.006 (1.83x) 2h29m (1.12x) | 0.070 (0.74x) 0.736 (210.98x) 7h26m (3.35X) | 0.094 0.003 2h13m
Flamethrower 4 [150, 207K] | 0.205 (1.67x) 0.044 (2.56X) 5h1lm (1.22X) | 0.093 (0.75X) 0.737 (42.70x) 7h10m (1.69x) | 0.123 0.017 4hld4m
Turntable 1 [397K, 599K] - - 49m34s - - 49m34s - - 49m34s
2 [397K, 599K] | 0.025 (1.25X) 0.036 (2.25X) 35m20s (1.12X) | 0.013 (0.65X) 0.544 (34.41x) 43m25s (1.38X) | 0.020 0.016 31m34s
4 [397K, 599K] | 0.052 (1.31x) 0.078 (2.45X) 21m52s (1.18%) | 0.030 (0.75X%) 0.746 (23.54X) 30m7s (1.63X) | 0.040 0.032 18m28s
8 [397K, 599K] | 0.136 (1.52x) 0.205 (5.54x) 18m33s (1.51x) | 0.082 (0.92x) 0.858 (23.16X) 19m38s (1.60X) | 0.089 0.037 12m18s
16 [397K, 599K] | 0.266 (1.97X) 0.328 (6.19x) 13m33s (1.44x) | 0.122 (0.90x) 0.901 (16.97Xx) 13m36s (1.45%) | 0.135 0.053 9m24s
32 [397K,599K] | 0.395(2.04x) 0.503 (7.45x) 10m1lds (1.29%) | 0.162 (0.84X) 0.939 (13.92x) 9ml8s (1.18X) | 0.193 0.067 7m54s
Fight scene) [32.5K, 369K] | 0.214 (1.48x) 0.318 (3.55x) - 0192 (133x) 0.668 (7.46x) - 0145 0.089 -
Corpus [2,32] [10k 1.2M] | 0.155(1.83x) 0.041 (9.34x) - | 0.081(0.82x) 0.569 (505.41%) - | 0.100 0.008 -

we have previously introduced as the desired workload L. We thus
define the load index Ap : [R] — R, for a given partitioning # and
rank r as a relative deviation from L

Ybep, Wh 1‘

In(r) = | =22

(18)

Assuming Wj, reflects the actual computation needed to process a
given bucket, a load index close to zero ensures the work is split
evenly across machines.

Surface index. Any nontrivial parallelizable simulation involves
accessing some form of neighbor data, which in a distributed setting
must be communicated between machines. We desire a metric
to reflect the costs associated with such communication, which
generally occurs at the borders between partitions. Consider the
set of neighboring buckets to the buckets of rank r that are still
part of the domain subset D, that is (7(P) \ Pr) N D;. We define
the surface index op : [R] — Ry as

onr) < (TP \BY 0D 19

|Pr |
which measures the number of buckets that need to be communi-
cated to rank r relative to the number of buckets it owns.

Temporal consistency index. The other major source of com-
munication arises when the partitioning is recomputed between
timesteps in response to changes in the shape of the domain subset,
leading to reshuffling of data ownership among ranks. To measure
this effect, we define the consistency index v : (P!, P2, 5) — R,
between partitionings P! and P? on a given bucket subset S by
counting the relative number of buckets in S that changed rank,

[{b € S : P1(b) # PX(b)}|
N '

v(PLPLS) = (20)
A value of zero implies that the partitioning remained unchanged
and hence no data needed to be transferred between ranks; larger
values correspondingly reflect increased transfer costs.

In practice, we are interested in tracking the consistency of a
partitioning across time, or more specifically, between subsequent
simulation timesteps. In our implementation, re-partitioning
P, = P(D?) is performed at the start of every simulation step on D?
and is compared with the previous partitioning $;_a, = P(D?_,)
extended to D!, . = D?, where any new buckets had already been

ACM Trans. Graph., Vol. 45, No. 2, Article 20. Publication date: January 2026.

added according to Section 4.2.6. We set S = D? = Dia_StAt, as both
configurations have this same bucket set allocated in memory,
and hence the metric value would be indicative of the transfer
costs. A visualization of the temporal consistency is shown in

Figure 3.

5.2 Comparison to other Partitioners

We perform comparisons w.r.t. METIS and SFC, which are com-
mon state-of-the-art partitioning techniques. Relevant details on
how to fit these into our sparse domain framework are presented
below. In particular, we handle dynamic bucket creation and dele-
tion as in Section 4.2.6, with the exception that instead of rank
positions x, in Equation (17), we use the average bucket position
Xr = Xpep, X¥p/|Pr| which is computed and stored immediately
after every call to the partitioner.

SFC. To partition a sparse grid domain D, with an SFC, the do-
main is embedded into a bounding cube. It is then subdivided into
n X n X n sub-boxes, to which the SFC is applied, where n is a power
of 2. Typically, 1024 suffices for our applications. Algorithmically
this means assigning each sub-box a unique index from 0 to n® — 1,
corresponding to its position along the curve—a procedure well-
established for Hilbert, Morton (Z-order), and other SFCs—so that
all sub-boxes are ordered in a 1D array of length n®. Mapping the
buckets of the domain D; to the sub-boxes based on proximity
in turn orders the former in a 1D array as well. This 1D array of
buckets is then divided into R contiguous intervals for distribution
across ranks. Tsuzuki and Aoki [2016] provide further details of
this approach. We used Hilbert curves for all SFC tests that we
performed.

METIS. We leverage METIS by building a graph G of the domain,
using D, as vertices and N to create edges. We then pass G on
to METIS_PartGraphRecursive [Karypis 2013], which returns a
graph partitioning that we map back to D;.

5.3 Application Experiments

In the following sections, we will use £ = {SFC, METIS, Power}
as labels for partitionings created by the respective partitioner.
We will omit presenting the load index (Equation (18)), since all
partitioners produce approximately even loads across ranks (i.e.,
max, Ay < Tload = 0.01 for all examples). Unless stated otherwise we
always report the largest surface index max, op (r) (Equation (19)).

A practical partitioner for distributed simulations on sparse dynamic domains using optimal transport « 20:9

' 1 METIS/Power

o 107 i I [l SFC/Power
— 1
— 8 1 I
2 B
= p
g ¢ Kl I
<%] 1
< 4 I
s i
< 27 Il

ol | :

10-1 10° 10!

relative surface index: max, Gother/max, opower [1]

1
I
|
|
n
n
0 L .
° 10

102 10! 10 1 102 103 104 10%
relative temporal index: Vother/ Wower [1]

data points [10%]

Fig. 7. Simulation corpus. We run METIS, SFC, and our Power partitioner
on 133 simulation data caches. For each frame in each cache we com-
pute a partitioning £ = {METIS, SFC, Power} and report relative met-
rics METIS/Power (olive) and SFC/Power (green) as a data point on a his-
togram. Top: the relative maximum surface index (Equation (19)) per frame
is recorded. Bottom: the relative temporal index (Equation (20)) per frame
is recorded. The mean of each histogram is drawn as a dashed vertical line;
the dashed blue line corresponds to the Power partitioner and can be used
as a guide to determine how it compares against the other two methods.
On average, Power outperforms both SFC (9.34X) and METIS (505X) in
temporal index; for surface index, Power outperforms SFC (1.83x) but is
mildly outperformed by METIS (0.82x). (© Weéta FX Ltd.

In what follows, we summarize the experiments we performed and
report the resulting data, deferring observations and discussions
until Section 6.

All simulations were run on machines with 64 physical CPU
cores and 256 GB of available RAM, with hyperthreading disabled,
using OpenMP to parallelize across all physical cores. The machines
are connected via a multi-level tree network topology, providing
roughly 20 Gbps full-duplex bandwidth and inter-node round-trip
latency in the range of 0.1-0.5 ms.

Weak scaling on static domains. We choose three analytical do-
main topologies intended to loosely resemble common simulation
scenarios: a meandering river, a smoke plume, and an ocean surface;
see Figure 10. The shapes are defined by analytical signed distance
fields, and the region of interest Q; = Q is defined as the set of
points within the zero isocontour (i.e., values less than or equal to
zero). We manually picked a uniform grid size A such that |P,| ~ 70k
for every simulation. For a simple representative simulation, we
perform a volumetric fluid simulation using the incompressible
Euler equations, consisting of a pressure projection—solved using
Successive Over-Relaxation (SOR) with a fixed number (100) of
iterations—and semi-Lagrangian advection [Stam 1999] with trilin-
ear interpolation and first order Runge-Kutta backtracing, which
we run for 10 timesteps. Each simulation step is initialized with
random velocity values to induce greater variety, each simulation

Frame: 1
w
2]
Fq
)
=
Q
=~
w
-
[
2
o
[=W
1.00 4
0.75
= 0.50 1
-
0.25
o
sl -Hlal 2] =] =
1201
M SFC B Ghost transfer time
METIS Partitioner compute time
— 801 M Power Repartition transfer time
o
g
S 401
3
0~ — —
m LS| N
0 - - : —
1 2 4 8 16 32
Ranks [1]

Fig. 8. Turntable. A rectangular domain is rotated rapidly for 24 frames,
where we perform a Poisson solve followed by an Eulerian advection step.
Partitionings for frames 1, 8, and 23 are shown (top); METIS produces
similar partitionings every frame, but they shift in time; SFC creates non-
local partitionings when the domain is non-axis aligned (see frames 8 and
23); Power (ours) produces local and temporally stable partitionings. The
temporal index v is recorded for every frame in a box plot (middle), together
with the total runtime (bottom). (© Wéta FX Ltd.

receiving the same random inputs. All metrics and timings are
reported in Tables 3 and 4.

Strong scaling on a dynamic domain. We perform a strong scaling
test on a rapidly rotating rectangular box, as shown in Figure 8,
using the same volumetric fluid solver as for the weak scaling test
above. The changing domain was designed to stress test temporal
consistency of different partitioners. Throughout the simulation
|D;| =~ 500k (the number varies depending on the orientation). All
metrics and timings are reported in Tables 2 and 5.

Simulation corpus. We run the partitioners on a corpus of 133
fluid cache sequences—including smoke, fire, and explosions from
actual film productions—constituting a total of 102580 unique
frames of volumetric and particle data. For each cache sequence
we identified the frame with the most buckets, max; |D;|, and

ACM Trans. Graph., Vol. 45, No. 2, Article 20. Publication date: January 2026.

20:10 « J. Wretborn et al.

Fig. 9. Flamethrower. A volumetric combustion simulation (left) was run on 4 machines with our Power partitioner. Here fire/smoke density (middle) and

sparse simulation domain buckets (right) are colored by rank. (©) Weta FX Ltd.

River Plume Waves
o
031 i ° i
—_— [e]
=
o 02 ° ~ * ~
& L 8 [F i
0.14 ° _—i 1 00 iOOO T 1 ! o T
- éoo —_ P 1 - l
=5 o - R i 2 = I
0.0 T _—— "=@s O o ° - 000 - =T °
80 1
Z 60
[}
Eo
=}
&
20
m

0
1 4

B SrC METIS
M Power M Power|gy

Ranks [1]

2 4 8

B Ghost transfer time
Partitioner compute time

Fig. 10. Weak scaling. Results from the River, Plume, and Waves weak scaling examples are shown, comparing different partitioning algorithms on a static
domain, where we perform a Poisson solve followed by an Eulerian advection step. We provide the surface index op (r) (Equation (19)) from the final frame
(top row), as well as performance numbers (middle row) from the frame with the lowest total runtime (out of 10 frames). We explicitly mark the time spent
computing the partitioning and time spent transferring ghost data. Since the domain is static, we do not provide the temporal consistency index. For a visual
comparison we also visualize the partitionings for 8 machines; the color of the image border indicates what algorithm was used. Performance metrics for

these simulations are summarized in Table 4. (©) Weta FX Ltd.

chose the number of ranks R = max; |D;|/50k rounded to the
nearest multiple of 2" ranks for the entire sequence. For each
frame+partitioner combination we calculated the temporal index
and recorded the maximum surface index across all ranks. To re-
move the noise and scaling effects associated with the wide variety
of domain sizes and topologies and hence vastly different mag-
nitudes of indices, we calculated relative values, SFC/Power and

ACM Trans. Graph., Vol. 45, No. 2, Article 20. Publication date: January 2026.

METIS/Power, for the corresponding indices and organized them
in a histogram, see Figure 7. Aggregate values are displayed in
Table 2.

Fight scene. We highlight one particularly challenging cache se-
quence from the corpus: a water simulation shot from Avatar: The
Way of Water, shown in Figure 1. In this extremely chaotic scenario,

A practical partitioner for distributed simulations on sparse dynamic domains using optimal transport

20:11

Table 3. Static Averages

SFC METIS Power (ours) Power|q4 | (ours)

R |Dy| o Runtime o Runtime o Runtime o Runtime
River | 1 69.6K - 17s (1.00X) ~17s (1.00X) ~17s (1.00X) B 17s
2 141K | 0.030 (2.02x) 225 (1.01x) | 0.007 (0.47%) 20s (0.92x) | 0.015 (1.00x) 215 (0.96X) | 0.015 22s
4 281K | 0.096 (3.57x) 285 (1.16X) | 0.020 (0.76X) 225 (0.91x) | 0.032 (1.19x) 23s (0.94x) | 0.027 24s
8 453K | 0.143 (1.61x) 355 (1.46X) | 0.040 (0.45%) 265 (1.07x) | 0.051 (0.57x) 265 (1.07X) | 0.089 24s
16 1.09M | 0.192 (2.56X) 425 (1.31X) | 0.072 (0.95%) 315 (0.98x) | 0.079 (1.05X) 365 (1.13x) | 0.075 32s
32 2.14M | 0.261 (2.54x) 1m31s(2.37X) | 0.120 (1.17x) 44s (1.16x) | 0.121 (1.18x) 51s (1.33x) | 0.102 385
Plume | 1 607K - 155 (1.00X) — 155 (1.00X) —15s (1.00X) - 15s
2 126K | 0.039 (0.68x) 225 (0.88X) | 0.030 (0.52%) 215 (0.84x) | 0.057 (1.00X) 24s (0.98x) | 0.057 255
4 235K | 0.163 (2.06x) 385 (1.70x) | 0.048 (0.61x) 215 (0.95x) | 0.081 (1.03x) 24s (1.09x) | 0.079 225
8 453K | 0.132 (1.48x) 255 (1.07X) | 0.090 (1.01x) 235 (0.96x) | 0.103 (1.16X) 27s (1.15X) | 0.089 24s
16 921K | 0.174 (1.55X) 375 (1.22%) | 0.112 (1.00x) 295 (0.95x) | 0.127 (1.13x) 31s (1.02x) | 0.113 31s
32 1.85M | 0.353 (2.50x) 1m17s (1.97X) | 0.168 (1.19x) 40s (1.02x) | 0.157 (1.11X) 46s (1.20x) | 0.141 395
Waves | 1 70.8K - 17s (1.00X) —17s (1.00X) -~ 17s (1.00X) . 17s
2 136K | 0.024 (1.11x) 215 (0.93X) | 0.016 (0.75%) 205 (0.89x) | 0.021 (1.00x) 225 (0.95x) | 0.021 23s
4 273K | 0.061 (1.73%) 255 (1.08X) | 0.033 (0.96X) 225 (0.98x) | 0.041 (1.18x) 27s (1.18x) | 0.035 235
8 453K | 0.115 (1.30x) 295 (1.22X) | 0.073 (0.82%) 255 (1.04x) | 0.101 (1.14X) 29s (1.21x) | 0.089 24s
16 1M | 0.162 (1.66X) 395 (1.32%) | 0.102 (1.05%) 30s (1.01x) | 0.119 (1.22x) 425 (1.41x) | 0.098 30s
32 2.05M | 0.218 (1.44x) 455 (1.20x) | 0.145 (0.96X) 40s (1.07x) | 0.168 (1.11x) 52s (1.37x) | 0.151 38s

We present the data for the static domain experiments in Figure 10, picking the frame with the shortest runtime out of 10 frames. Surface index is presented by computing

max, o. Runtime is the runtime for the frame. Values in parentheses (-) are computed by dividing by the same metric for the Power| ¢4y partitioner.

the Power partitioner outperforms both METIS and SFC in both
surface and temporal metrics (see Table 2).

Boat wake and flamethrower. Lastly, we compare the different
partitioners on two common VFX simulation scenarios. First, a
moving boat on flat open water is simulated with a hybrid particle-
in-cell method [Fu et al. 2017a], gradually expanding the simulation
domain to capture the produced wake (Figure 6). Second, we use a
physically based combustion model [Edholm et al. 2023] to create a
moving flamethrower (Figure 9). Runtimes and metrics are reported
in Table 2.

6 Discussion

We have evaluated our novel Power partitioning algorithm, based
on optimal transport, in a range of challenging scenarios, demon-
strating significant advancements over other state-of-the-art parti-
tioning methods for sparse dynamic domain configurations with
runtime speedups of up to 70% (e.g., “Boat wake”, Table 2).

Temporal coherence. When averaging over the simulation corpus
(Figure 7), the Power partitioner has superior temporal proper-
ties compared with both SFC (9.34X) and METIS (505x). Notably,
METIS re-shuffles, on average, 57% of the domain subset every
simulation step (see Table 2), rendering it impractical for sparse
dynamic domains.

Data transfers related to re-partitioning can cause significant
performance losses. For example, in Figure 8 there are multiple
instances where the re-partitioning transfer time is longer than the
total ghost (i.e., neighbor) transfer time for the same timestep, when
using METIS. Additionally, in the boat wake example (Figure 6),
both SFC and Power simulate significantly faster than METIS due
to their low temporal consistency index, all while having a higher
average surface index. Importantly, re-partitioning, in contrast to
ghost transfers, is difficult to perform asynchronously, making it a
blocking part of the simulation code.

The high temporal coherence of our method is the result of two
key aspects. The first is the regularization term in Equation (3),
which ensures there is a unique (regularized) optimal coupling T,
and the second is our warm-start procedure for x,. The progressive
reduction of ¢ (Section 4.2.2) during the Lloyd iterations ensures
quick convergence to optimal coupling which, when converted to
a partitioning via Equation (15), satisfies the target load threshold
(Section 4.2.3). The resulting partitioning yields power cells that
evolve smoothly in time, even when the simulation domain under-
goes large topological changes. The convergence study in Figure 5
supports the reliability of our method, although we lack a formal
proof of convergence. While we limit Lloyd iterations [to 10, con-
vergence typically occurs within 1-3 iterations to our target load
threshold, 710, = 0.01. In order for P to be a good approximation
of T (via Equation (15)) we set Tsinkhorn = 0.57load (Equation (10)) in
all of our examples.

One beneficial side-effect of the Lloyd iterations in Algorithm 1 is
that partitions tend approximately towards centroidal Power cells,
although only indirectly, since the termination condition is based
solely on 7jo,4. It is possible to introduce an additional criterion
that explicitly constrains ||x, — ¢,||, but doing so typically increases
the number of Lloyd iterations. While more centroidal Power cells
can yield slightly improved spatial locality, as their shapes tend
to be more compact, in our experiments the resulting reduction
in transfer time was marginal and did not justify the additional
iteration cost.

Spatial locality. METIS produces individual partitionings with
the highest spatial locality across all of our tests, as indicated by
a low surface index (Tables 2-3). This is not surprising: METIS
receives topological information of the domain via N, which both
Power and SFC lack. Despite this, the Power partitioner is able
to partition many challenging and non-convex scenarios close to
optimally, such as the crescent (Figure 3) and river (Figure 10, left).

ACM Trans. Graph., Vol. 45, No. 2, Article 20. Publication date: January 2026.

20:12 « J. Wretborn et al.

Table 4. Static Performance Breakdown

R RAM (GB) Runtime (s) Ghost data (GB) Ghost transfer Partitioner
and sync (s) compute (s)

River 1 1453 (1.00%) 17.32s (1.00X) B B B

SFC 2 885 (1.00X) 22.71s (1.06X) 1.93 1.96X) 2.62s 172X) T4ms 131x)
METIS 8.73 (0.98x) 20.57s (0.96X) 0.46 (0.46x) 1.04s (0.68x) 57ms (5.20x)
Power 8.89 (1.00) 21.40s (1.00%) 0.98 (1.00x) 1.53s (1.00X) 11ms (1.00x)
Power| g | 9.01 (1.01X) 22.39s (1.05%) 0.98 (1.00%) 1.57s (1.02X) 15ms (1.38%)
SFC 1 9.14 (1.00X) 28.54s (1.24%) 179 (0.90%) 6.99 (2.92X) 28ms (0.49%)
METIS 9.00 (0.99%) 22.41s (0.97%) 0.71 (0.36x) 1.98s (0.82x) 198ms (3.44x)
Power 9.10 (1.00) 23.08s (1.00X) 2.00 (1.00x) 2395 (1.00X) 58ms (1.00x)
Power | g 9.21 (1.01x) 24.57s (1.06X) 1.62 (0.81x) 3.425 (1.43%) 51ms (0.89x)
SFC 3 9.44 (1.00X) 35.62s (137X) 3.90 (1.24%) 12.22s (2.91X) 63ms (0.39%)
METIS 9.42 (0.99%) 26.03s (1.00x) 2.49 (0.79%) 4.11s (0.98x) 570ms (3.47x)
Power 9.47 (1.00x) 26.05s (1.00X) 3.15 (1.00x) 4.20s (1.00X) 164ms (1.00x)
Power| g4k 11.90 (1.26) 24.35s (0.93%) 4.85 (1.54x) 4.75s (1.13%) 111ms (0.67x)
SFC 16 10.90 (0.99%) 42.73s (T.16%) 975 (1.90%) 15.47s (T37%) 130ms (0.16x)
METIS 9.79 (0.89%) 31.98s (0.87x) 1.96 (0.38x) 7.32s (0.65%) 1.51s (1.83%)
Power 11.02 (1.00) 36.79s (1.00X) 5.14 (1.00) 11.32s (1.00X) 825ms (1.00)
Power| g4 10.24 (0.93x) 32.55s (0.88%) 4.79 (0.93x) 8.27s (0.73%) 250ms (0.30x)
SFC 32 1138 (0.36x) Tm31s (T.78%) 10.63 (T42x) 54.07s (@.25%) 266ms (0.03%)
METIS 11.26 (0.86X) 44.78s (0.87x) 6.15 (0.82%) 12.33s (0.97%) 3.94s (0.46%)
Power 13.16 (1.00) 51.33s (1.00X) 7.50 (1.00) 12.73s (1.00X) 8.49s (1.00)
Power| i) 11.07 (0.84x) 38.485 (0.75%) 6.45 (0.86x) 9.01s (0.71%) 986ms (0.12x)
Plume 1 13.75 (1.00X) 15.96s (T.00X) B B B

SFC 2 858 (0.99%) 22.03s (0.89%) 227 0.67X) 3435 (0.63%) T4ms 156X)
METIS 8.30 (0.96x) 21.03s (0.85%) 175 (0.52x) 2.24s (0.41x) 59ms (6.74x)
Power 8.63 (1.00) 24.70s (1.00X) 3.39 (1.00x) 5.40s (1.00X) 9ms (1.00x)
Power| g4 8.72 (1.01x) 25.13s (1.02%) 3.39 (1.00x) 5.73s (1.06X) 11ms (1.25x)
SFC 1 10.14 (0.73%) 38.85s (157X) 9.77 (332X) 14.18s (3.24%) 25ms (0.03%)
METIS 8.05 (0.58x) 21.73s (0.88x) 2.29 (0.78x) 2.57s (0.59%) 171ms (0.18x)
Power 13.81 (1.00) 24.78s (1.00X) 2.94 (1.00x) 4.37s (1.00%) 961ms (1.00x)
Power| g4k 13.75 (1.00) 22.82s (0.92%) 2.72 (0.92x) 4.07s (0.93%) 191ms (0.20x)
SFC 8 9.27 (0.77%) 25.955 0.93%) 6.65 T17%) 6.81s (0.95%) 47ms (0.13%)
METIS 8.19 (0.68x) 23.32s (0.83x) 3.07 (0.54x) 4.05s (0.56X) 531ms (151%)
Power 12.03 (1.00) 27.965 (1.00X) 5.67 (1.00x) 7.19s (1.00%) 351ms (1.00)
Power| g4 11.90 (0.99x) 24.35s (0.87%) 4.85 (0.86x) 4.75s (0.66X) 111ms (0.32x)
SFC 16 9.23 (0.34%) 37.94s (T.21X) 6.18 (0.90%) 14.86s (1.76X) 99ms (0.10%)
METIS 8.36 (0.76X) 29.30s (0.93%) 3.20 (0.47%) 7.03s (0.83%) 1.28s (1.29%)
Power 10.95 (1.00) 31.49s (1.00X) 6.85 (1.00) 8.44s (1.00X) 992ms (1.00)
Power| g4 10.90 (1.00) 31.00s (0.98%) 6.63 (0.97x) 7.495 (0.89%) 519ms (0.52x)
SFC 32 1175 T.07%) Tmi7s (1.64%) 23.12 2.78%) 36.84s (2.96X) 208ms (0.03%)
METIS 9.00 (0.82%) 40.08s (0.85%) 431 (0.52%) 10.00s (0.80%) 3.39s (0.44%)
Power 10.99 (1.00) 46.93s (1.00X) 8.33 (1.00) 12.43s (1.00X) 7.63s (1.00)
Power| i) 10.21 (0.93x) 39.20s (0.84x) 8.08 (0.97x) 11.89s (0.96X) 684ms (0.09%)
Waves 1 14.61 (1.00X) 17.265 (1.00X) - B -

SFC 2 8.97 (0.90%) 21.78s (0.98%) 1.50 (T12X) 2.50s (1.04X) T4ms 0.64%)
METIS 9.03 (0.90x) 20.83s (0.94x) 1.02 (0.76) 1.64s (0.68X) 55ms (2.58x)
Power 10.01 (1.00) 22.285 (1.00X) 1.33 (1.00x) 2.41s (1.00%) 21ms (1.00x)
Power| g4 9.98 (1.00) 23.35s (1.05%) 1.33 (1.00x) 3.77s (1.56X) 18ms (0.87x)
SFC ! 9.79 (T.00%) 25275 0.92%) 2.76 (1.04%) 1305 (0.61%) 30ms (0.15%)
METIS 9.53 (0.97x) 22.95s (0.83%) 2.06 (0.78x) 2.60s (0.36X) 192ms (0.96%)
Power 9.82 (1.00) 27.57s (1.00X) 2.64 (1.00) 7.21s (1.00X) 200ms (1.00)
Power| g4 9.62 (0.98x) 23.465 (0.85%) 2.25 (0.85x) 2.64s (0.37%) 71ms (0.35x)
SFC 8 10.97 (0.97) 29.80s (T.01X) 5.01 197%) 8.71s (T11X) 55ms (0.14%)
METIS 10.83 (0.96X) 25.34s (0.86x) 4.46 (1.75%) 457s (0.58%) 587ms (151%)
Power 11.30 (1.00) 29.365 (1.00X) 2.54 (1.00) 7.81s (1.00%) 389ms (1.00)
Power| g4 11.90 (1.05x) 24.35s (0.83%) 4.85 (1.91x) 4.75s (0.61x) 111ms (0.28x)
SFC 16 13.06 (0.99%) 39.98s 0.94%) 631 (0.92x) 15.865 (0.96X) 120ms (0.08x)
METIS 12.86 (0.98X) 30.61s (0.72x) 4.89 (0.72%) 6.99s (0.42%) 1.45s (1.02%)
Power 13.14 (1.00) 42.65s (1.00X) 6.82 (1.00) 16.58s (1.00X) 1.43s (1.00)
Power| g4 13.33 (1.01x) 30.20s (0.71%) 5.82 (0.85x) 8.08s (0.49%) 197ms (0.14x)
SFC 32 17.74 (0.98%) 45.63s (0.87X) 7.80 (1.21%) 16.35s (1.20X) 261ms (0.02%)
METIS 17.63 (0.98%) 40.81s (0.78%) 3.07 (0.48%) 10.66s (0.78%) 3.59s (0.33%)
Power 18.02 (1.00) 52.40s (1.00) 6.43 (1.00) 13.67s (1.00X) 10.84s (1.00x)
Power| i) 17.97 (1.00x) 38.13s (0.73%) 5.57 (0.87x) 9.79s (0.72x) 1.17s (0.11x)

Breakdown of memory usage, communication volume, and runtime for static-domain simulations (no changes in the domain subset over time). Each row corresponds to the
simulation and partitioner configuration listed in Table 3. All values are reported for rank 0. RAM usage is reported as the maximum over the simulation; all other values are taken
from the frame with the shortest Runtime. Ghost data includes both sent and received data, and the corresponding transfer time includes rank synchronization. Values in
parentheses (-) are computed by dividing by the same metric for the Power partitioner.

Importantly, the Power partitioner produces much more robust Note that the relationship between surface index and the amount
partitionings compared with SFC. Consider the still-frame parti- of ghost data transfers is nontrivial in practice. It depends on the
tionings with SFC in Figure 8 (2nd row from top). Since the SFC is implementation details of the simulator, since the data-access pat-
embedded into a bounding cube, small rotations of the domain can terns of individual algorithms, as well as the bucket data memory
have catastrophic effects on the partitioning quality. layout, determine what data must be transferred and when. We

ACM Trans. Graph., Vol. 45, No. 2, Article 20. Publication date: January 2026.

A practical partitioner for distributed simulations on sparse dynamic domains using optimal transport « 20:13
Table 5. Dynamic Performance Breakdown
frames | R RAM (GB) Runtime Ghost data Ghost transfer Repartition Repartition Partitioner

(s/frame) (GB/frame) | and sync (s/frame) | data (GB/frame) | transfer (s/frame) | compute (s/frame)
Boat wake
SFC 262 | 4 | 4979 (1.23%) | 34225 (1.12X) | 2.81 (1.90X) | 4.93s (1.54x) | 0.07 (1.60x) | 255ms (1.67%) | 18ms (0.44x)
METIS 6550 (1.62x) | Imd2s (3.35%) | 1.68 (1.14x) | 8.70s (2.72x) | 1835 (422.80x) | 59.57s (389.41x) | 105ms (2.60x)
Power 40.50 (1.00x) | 30.48s (1.00x) | 1.48 (1.00x) | 3.21s (1.00x) | 004 (1.00x) | 153ms (1.00x) | 40ms (1.00x)
Flamethrower
SFC 240 | 4 | 1474 (1.18x) | 1m17s (1.22x) | 9.76 (1.80X) | 21.04s (2.02x) | 020 (3.14x) | 1.04s (2.52x) | 82ms (0.11%)
METIS 2033 (1.63x) | 1m47s (1.69x) | 6.58 (1.21x) | 14.93s (143x) | 7.54 (117.62X) | 30.62s (74.48x) | 605ms (0.79%)
Power 1251 (1.00x) | 1m3s (1.00X) | 5.44 (1.00x) | 10.43s (1.00x) | 0.06 (1.00x) | 411ms (1.00x) | 763ms (1.00x)
Turntable 25 1 | 57.76 1m58s (1.00%) - - - -
SFC 2 | 42.82 (1.27%) | Im24s (L.12x) | 546 (1.36x) | 4.18s (1.07x) | 076 (2.04x) | 2.38s (2.06%) | 53ms 0.77x)
METIS 83.40 (247x) | 1m4ds (1.38x) | 3.49 (0.87x) | 4.24s (1.09%) | 952 (25.49%) | 23.56s (20.37x) | 297ms (4.28x)
Power 3373 (1.00x) | 1m15s (1.00x) | 4.00 (1.00x) | 3.91s (1.00x) | 037 (1.00x) | 1.16s (1.00x) | 69ms (1.00x)
SFC 4 [2449 (1.13X) | 52505 (L18x) | 463 (L.15X) | 557s (1.65%) | 0.40 (T.15%) | 2.84s (234%) | 56ms (0.55x)
METIS 49.82 (2.30x) | Im12s (1.63X) | 3.38 (0.84x) | 4.54s (1.34x) | 663 (19.19%) | 22595 (18.60x) | 436ms (4.31x)
Power 2162 (1.00x) | 44.36s (1.00x) | 4.03 (1.00x) | 3.38s (1.00x) | 035 (1.00x) | 1.21s (1.00x) | 101ms (1.00x)
SFC 8 [1463 (1.11X) | 44535 (151x) | 477 (1.34x) | 5.75s (178%) | 046 (2.70%) | 432s (452x) | 54ms (0.15%)
METIS 29.96 (2.26x) | 47.15s (1.60x) | 3.16 (0.88x) | 3.78s (117%) | 3.65 (21.15%) | 13.05s (13.67x) | 560ms (1.56x)
Power 13.23 (1.00X) | 29.55s (1.00X) | 3.57 (1.00x) | 3.23s (1.00x) | 017 (1.00X) | 955ms (1.00x) | 359ms (1.00x)
SFC 16 | 1049 (1.33X) | 32.54s (1.44x) | 3.21 (1.29X) | 4.55s (136X) | 038 (3.82x) | 3.69s (3.73x) | 53ms (0.05%)
METIS 1597 (2.02%) | 32.66s (1.45X) | 2.53 (1.02X) | 3.35s (1.00x) | 1.98 (19.72%) | 8.61s (8.69%) | 644ms (0.57x)
Power 7.89 (1.00x) | 22565 (1.00x) | 2.48 (1.00x) | 3.35s (1.00x) | 0.10 (1.00x) | 991ms (1.00x) | 1.13s (1.00x)
SFC 32| 7.20 (1.07X) | 2457s (1.29%) | 2.85 (1.54x) | 3.46s (1.55%) | 0.29 (3.66x) | 3.00s (255%) | 53ms (0.02)
METIS 972 (1.44x) | 22355 (1.18x) | 191 (1.03x) | 2.95s (132x) | 1.00 (12.78%) | 4.24s (3.61x) | 759ms (0.26%)
Power 674 (1.00x) | 18.97s (1.00x) | 1.85 (1.00x) | 2.24s (1.00x) | 0.08 (1.00x) | 1.18s (1.00x) | 2.89s (1.00x)

Breakdown of memory usage, communication volume, and runtime for dynamic-domain simulations. Each row corresponds to the simulation and partitioner listed in Table 2.
All values are reported for rank 0. RAM usage is reported as the maximum over the simulation; all other values are averaged over the number of frames. Ghost data and
repartition data includes both sent and received data, and are separated to highlight the cost of spatial locality (ghost data) versus temporal coherence (repartition data).
Synchronization of ranks is included in the ghost transfer time. Values in parentheses (-) are computed by dividing by the same metric for the Power partitioner.

do not attempt to derive an exact relationship in this work, and
instead provide the timing breakdowns in Tables 5-4.

Performance. The computation time of the Power partitioner
deteriorates as R X |D| grows, caused by the dense matrix-vector
products in the Sinkhorn solve (Equations (8)-(9)) or log-domain
Sinkhorn solve (Equations (11)—(12)). We have found that a simple
coarsening procedure (Section 4.2.5) alleviates the problem (Fig-
ure 10), which ensures partitioning takes less than 2% of simulation
time even for R = 32 and |D| ~ 2M (see exact numbers in Tables 3
and 4). Interestingly, the coarsened Power partitioner sometimes
yields a lower surface index than the non-coarsened version (Fig-
ure 10), which we believe is due to coarsening creating beneficial
neighbor patterns. In principle, one could adapt the coarsening
level based on the regularization parameter, selecting a bucket size
that matches the effective “blurring” of the optimal coupling in-
duced by ¢. Since the scale of our typical problems is within R < 10
and |D| < 1M, we have not found coarsening to be a requirement
in practice and we leave such explorations of coarsening strategies
to future work.

The scaling, both strong (Figure 8) and weak (Figure 10), of our
solvers is suboptimal by supercomputing standards. We attribute
this partly to ghost transfer communication, which was imple-
mented with blocking calls to ensure we could accurately measure
time spent in communication vs computation. Asynchronously
overlapping communication and computation, however, is unlikely
to hide all communication costs, since many algorithms commonly
used in VFX are memory bound. Therefore, the need for a high-
quality partitioner remains relevant.

7 Conclusion

Our proposed partitioning algorithm, leveraging optimal trans-
port to generate a power diagram based on the distribution of

work in the domain, demonstrates significant advancements in
distributing large-scale physics-based simulations for VFX applica-
tions. We evaluated our method on real-world production scenarios,
which feature highly dynamic domain topologies on sparse and
non-convex domains. To analyze the quality of a partitioning we
introduced the surface index and the temporal consistency index, and
analyzed our method’s effect on simulation runtimes. The study
in Figure 7 indicates major improvements in temporal index over
SFC and METIS. The surface index is improved considerably over
SFC, while being slightly worse than for METIS. Overall, our pro-
posed method strikes a solid balance on the qualitative objectives
we stated at the outset, generally outperforming both METIS and
SFC in total runtime.

References

Dan Bailey, Harry Biddle, Nick Avramoussis, and Matthew Warner. 2015. Distributing
liquids using OpenVDB. In ACM SIGGRAPH 2015 Talks. ACM, New York, NY, USA.

Berger and Bokhari. 1987. A partitioning strategy for nonuniform problems on multi-
processors. IEEE Trans. Comput. C-36, 5 (May 1987), 570-580.

Morten Bojsen-Hansen, Michael Bang Nielsen, Konstantinos Stamatelos, and Robert
Bridson. 2021. Spatially adaptive volume tools in bifrost. In ACM SIGGRAPH
Talks.

Ricard Borrell, Guillermo Oyarzun, Damien Dosimont, and Guillaume Houzeaux. 2020.
Parallel SFC-based mesh partitioning and load balancing. arXiv [physics.comp-ph]
(July 2020).

Robert Edward Bridson. 2003. Computational Aspects of Dynamic Surfaces. Ph.D. Dis-
sertation. Stanford, CA, USA.

Magnus Bruaset and Aslak Tveito (Eds.). 2005. Numerical Solution of Partial Differential
Equations on Parallel Computers (2006 ed.). Springer, Berlin, Germany.

Fernando de Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun.
2012. Blue noise through optimal transport. ACM Trans. Graph. 31, 6 (November
2012), 1-11.

Fernando de Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun.
2015. Power particles: An incompressible fluid solver based on power diagrams.
ACM Trans. Graph. 34, 4 (July 2015), 1-11.

John Edholm, Alexey Stomakhin, Rahul Deshprabhu, David Caeiro Cebrian, Florian
Hu, and Caitlin Pope. 2023. Fire and explosions in Avatar: The way of water. In
ACM SIGGRAPH 2023 Talks (SIGGRAPH ’23).

Lucio Flores and David Horsley. 2009. Underground cave sequence for Land of the
Lost. In SIGGRAPH 2009: Talks. ACM, New York, NY, USA.

ACM Trans. Graph., Vol. 45, No. 2, Article 20. Publication date: January 2026.

20:14 « J. Wretborn et al.

Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017a. A
polynomial particle-in-cell method. ACM Trans. Graph. 36, 6 (Nov. 2017), 1-12.

Lin Fu, Xiangyu Y Hu, and Nikolaus A Adams. 2017. A physics-motivated Centroidal
Voronoi Particle domain decomposition method. 7. Comput. Phys. 335 (April 2017),
718-735.

Geoffrey Irving, Eran Guendelman, Frank Losasso, and Ronald Fedkiw. 2006. Effi-
cient simulation of large bodies of water by coupling two and three dimensional
techniques. In SIGGRAPH’ 06. ACM Press, New York, New York, USA.

Laxmikant V. Kale and Sanjeev Krishnan. 1993. CHARM++. In Proceedings of the
Eighth Annual Conference on Object-Oriented Programming Systems, Languages,
and Applications. ACM, New York, NY, USA.

George Karypis. 2013. METIS Manual: A Software Package for Partitioning Un-
structured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings
of Sparse Matrices. Retrieved from https://github.com/KarypisLab/METIS/blob/
master/manual/manual. pdf Accessed: 2025-4-13.

George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 1 (Jan. 1998),
359-392.

R. Koradi, M. Billeter, and P. Giintert. 2000. Point-centered domain decomposition
for parallel molecular dynamics simulation. Comput. Phys. Commun. 124, 2-3
(February 2000), 139-147.

Jeff Lait. 2016. Inside houdini’s distributed solver system. In ACM SIGGRAPH 2016
Talks. ACM, New York, NY, USA.

Steve Lesser, Alexey Stomakhin, Gilles Daviet, Joel Wretborn, John Edholm, Noh-Hoon
Lee, Eston Schweickart, Xiao Zhai, Sean Flynn, and Andrew Moffat. 2022. Loki: A
unified multiphysics simulation framework for production. ACM Trans. Graph. 41,
4 (July 2022), 1-20

S. Lloyd. 1982. Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 2 (March
1982), 129-137.

Manish Mandad, David Cohen-Steiner, Leif Kobbelt, Pierre Alliez, and Mathieu Des-
brun. 2017. Variance-minimizing transport plans for inter-surface mapping. ACM
Trans. Graph. 36, 4 (Aug. 2017), 1-14.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph
Teran, and Eftychios Sifakis. 2011. Efficient elasticity for character skinning with
contact and collisions. ACM Trans. Graph. 30, 4 (July 2011), 1-12.

Ken Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM
Trans. Graph. 32, 3 (June 2013), 1-22.

Olga Pearce, Todd Gamblin, Bronis R. de Supinski, Martin Schulz, and Nancy M. Amato.
2012. Quantifying the effectiveness of load balance algorithms. In Supercomputing.

Gabriel Peyré and Marco Cuturi. 2019. Computational optimal transport: With applica-
tions to data science. Foundations and Trends® in Machine Learning 11, 5-6 (2019),
355-607.

Yuxing Qiu, Samuel Temple Reeve, Minchen Li, Yin Yang, Stuart R. Slattery, and
Chenfanfu Jiang. 2022. A sparse distributed gigascale resolution material point
method. ACM Trans. Graph. (November 2022).

Ziyin Qu, Minchen Li, Fernando De Goes, and Chenfanfu Jiang. 2022. The power
particle-in-cell method. ACM Trans. Graph. 41, 4 (July 2022), 1-13.

ACM Trans. Graph., Vol. 45, No. 2, Article 20. Publication date: January 2026.

Ziyin Qu, Minchen Li, Yin Yang, Chenfanfu Jiang, and Fernando De Goes. 2023. Power
plastics: A hybrid Lagrangian/Eulerian solver for mesoscale inelastic flows. ACM
Trans. Graph. 42, 6 (Dec. 2023), 1-11.

Kirk Schloegel, George Karypis, and Vipin Kumar. 2003. Graph partitioning for high-
performance scientific simulations. In Sourcebook of Parallel Computing. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 491-541.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:
A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans.
Graph. 33, 6 (Nov. 2014), 1-12.

C. Shah, D. Hyde, H. Qu, and P. Levis. 2018. Distributing and load balancing sparse
fluid simulations. Comput. Graph. Forum 37, 8 (Dec. 2018), 35-46.

Justin Solomon. 2018. Optimal transport on discrete domains. arXiv [math.OC] (January
2018).

Justin Solomon, Fernando de Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher,
Andy Nguyen, Tao Du, and Leonidas Guibas. 2015. Convolutional wasserstein
distances. ACM Trans. Graph. 34, 4 (July 2015), 1-11.

Jos Stam. 1999. Stable fluids. In SIGGRAPH ’99. ACM.

Alexey Stomakhin, Steve Lesser, Joel Wretborn, Sean Flynn, Johnathan Nixon, Nicholas
Illingworth, Adrien Rollet, Kevin Blom, and Douglas Mchale. 2023. Pahi: A unified
water pipeline and toolset. In Proceedings of the Digital Production Symposium
(DigiPro’23), Association for Computing Machinery, New York, NY, USA, 1-13.

Igor Surmin, Alexei Bashinov, Sergey Bastrakov, Evgeny Efimenko, Arkady Gonoskov,
and Iosif Meyerov. 2015. Dynamic load balancing based on rectilinear partitioning
in particle-in-cell plasma simulation. Springer.

Satori Tsuzuki and Takayuki Aoki. 2016. Effective dynamic load balance using space-
filling curves for large-scale SPH simulations on GPU-rich supercomputers. In 2016
7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems
(ScalA). IEEE.

Huamin Wang, Peter J. Mucha, and Greg Turk. 2005. Water drops on surfaces. ACM
Trans. Graph. 24, 3 (July 2005), 921-929.

Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen Li, Song-Chun Zhu,
Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang. 2020. A massively
parallel and scalable multi-GPU material point method. ACM Trans. Graph. 39, 4
(August 2020).

Joel Wretborn, Alexey Stomakhin, and Christopher Batty. 2025. A unified multi-
scale method for simulating immersed bubbles. Comput. Graph. Forum (April
2025).

Xiao Zhai, Fei Hou, Hong Qin, and Aimin Hao. 2020. Fluid simulation with adaptive
staggered power particles on GPUs. IEEE Trans. Vis. Comput. Graph. 26, 6 (June
2020), 2234-2246.

Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010. An efficient
multigrid method for the simulation of high-resolution elastic solids. ACM Trans.
Graph. 29, 2 (March 2010), 1-18.

Received 25 June 2025; revised 18 November 2025; accepted 25 November
2025

https://github.com/KarypisLab/METIS/blob/master/manual/manual.pdf
https://github.com/KarypisLab/METIS/blob/master/manual/manual.pdf

