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Abstract of the Dissertation

Part I: Reconstruction of Missing Data in Social

Networks Based on Temporal Patterns of Interactions

Part II: Constitutive Modeling in Solid Mechanics for

Graphics Applications

by

Alexey Dmitrievich Stomakhin

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2013

Professor Joseph Teran, Co-chair

Professor Andrea Bertozzi, Co-chair

In Part I, the author presents a mathematical framework based on a self-exciting point

process aimed at analyzing temporal patterns in the series of interaction events between

agents in a social network. We develop a reconstruction model formulated as a constraint

optimization problem that allows one to predict the unknown participants in a portion of

those events. The results are used to predict the perpetrators of the unsolved crimes in the

Los Angeles gang network.

Part II discusses the work undertaken by the author in deformable solid body simulation.

We first focus on purely elastic solids and develop a method for extending an arbitrary

isotropic hyperelastic energy density function to inverted configurations. This energy based

extension is designed to improve robustness of elasticity simulations with extremely large

deformations typical in graphics applications and demonstrates significant improvements

over similar stress based techniques presented in [40, 86]. Moreover, it yields continuous

stress and unambiguous stress derivatives in all inverted configurations. We also introduce

a novel concept of a hyper-elastic model’s primary contour which can be used to predict its

robustness and stability. We demonstrate that our invertible energy-density-based approach
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outperforms the popular hyperelastic corotated model [13, 56] and show how to use the

primary contour methodology to improve the robustness of this model to large deformations.

We further develop a novel snow simulation method utilizing a user-controllable consti-

tutive model defined by an elasto-plastic energy density function integrated with a hybrid

Eulerian/Lagrangian Material Point Method (MPM). The method is continuum based and its

hybrid nature allows us to use a regular Cartesian grid to automate treatment of self-collision

and fracture. It also naturally allows us to derive a grid-based implicit integration scheme

that has conditioning independent of the number of Lagrangian particles. We demonstrate

the power of our method with a variety of snow phenomena.
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Reconstruction of Missing Data in

Social Networks Based on Temporal

Patterns of Interactions
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CHAPTER 1

Introduction

Prediction of missing information is an important part of data analysis in social sciences [75,

49, 37]. The examples studied in literature, mostly by statisticians, include reconstruction of

the unknown connections in a social network [36, 35], analyzing non-ignorable non-responses

in a survey sampling [38, 10], and many others. The most common way to deal with missing

values is to replace them by some plausible estimates using known or model-based cross-

dependencies over the network in question.

However, these methods do not typically consider networks that change with time, when

another source of information is given by the temporal patterns arising from the network

evolution. Such networks are the primary object of study in this manuscript.

t, days
100 200 300 400 500 600 700 800 900

Figure 1.1: Temporal clustering of the interaction events between Clover and East Lake

gangs in Los Angeles, during the period 1999-2002.

As our main example, we consider the gang rivalry network in the Los Angeles policing

district Hollenbeck [90]. Police data on gang crimes from 1999 to 2002 reveal temporal

clustering of gang interaction events, which is demonstrated in Figure 1.1. These temporal

patterns can be used to solve the following inverse problem: predict the participants of the

gang-related crimes if some of them are not known.

For a given pair of agents, the interaction events can either be independent, following

a Poisson process, or temporally dependent, in which case the occurrence of one event can

2



change the likelihood of subsequent events in the future. Such event dependency for the

Los Angeles gang network has been established in [22], where a Hawkes process [32, 33],

commonly used in seismology to model earthquakes [68, 100], was compared to inter-gang

violent crimes.

The rest of the work is organized as follows. In Chapter 2 we formalize the problem

and describe a model of interaction between network agents based on a Hawkes process. In

Chapter 3 we propose a way of predicting the unknown participants of interaction events,

which we formulate as a constrained optimization problem. We analyze our method and the

solution it gives and also present and discuss the prediction results.
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CHAPTER 2

Problem Formulation

2.1 Problem Description

We model a social network as a graph with nodes representing the agents and edges, or binary

links [35], indicating whether or not the corresponding pair of agents interact. We further

look at the series of pairwise interaction events between the agents, characterized by their

occurrence times and the pairs involved. We assume that the network structure represented

by the graph does not change with time, although each pair of interacting agents can have its

own prescribed model of behavior that might involve some time dependence. Suppose all the

times of the events are known, but for some of them, data on one or both of the participants

are missing. The problem is to reconstruct the missing data about the participants based

on the behavioral model.

t

t

t

αβ

βγ

γα

Figure 2.1: Graphical representation of the problem.

Before we proceed, let us discuss a convenient graphical representation of the problem

shown in Figure (2.1). Here we deal with a network consisting of three agents α, β, and γ,

with all pairs being active. The black points correspond to the events without any missing

information. All events are ordered in time and there is a separate timeline for each pair of

agents. The incomplete events, which are those with missing data about the participants,

4



cannot be assigned to any particular timeline and are therefore represented via vertical series

of white circles. Our goal is to replace each vertical set of white circles with a black circle

on one of the timelines in a way that will give the most plausible picture in accordance with

the model.

Figure 2.2: Graph of the gangs network in the Los Angeles policing district Hollenbeck [90].

Each of the twenty-nine gangs is represented by a node, and the edges indicate the presence

of rivalries between them.

Returning to the network of gangs in Los Angeles: there are twenty-nine agents and the

binary links indicate the existing rivalries between them, shown in Figure (2.2). In case of a

rivalry, we have a series of crimes corresponding to the interaction events. These are typically

murders, shots fired, etc. The data captures the information about which two gangs were

involved in a crime; however, for a large fraction of them only victim affiliation is provided.

The problem in this case is to estimate the affiliation of the unknown offenders.

2.2 Agent Interaction Model

A Hawkes process [32, 33] is a self-exciting point process commonly used in seismology to

model earthquakes [68, 100] and defined by its intensity function

λ(t) = µ+ θ
∑
ti<t

g(t− ti). (2.1)
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The intensity function λ(t) is partitioned into the sum of a Poisson background rate µ and

a self-exciting component, through which events trigger an increase in the intensity of the

process. The elevated rate spreads in time according to the kernel g, with θ being the scaling

factor of the effect. In other words, each event generates a sequence of offspring or repeat

events, which leads to temporal clustering. This agrees with the evidence that retaliations

are commonplace among rival gangs [91, 41]. A similar approach was used to model repeat

and near-repeat burglary effects in [79, 60] and temporal dynamics of violence in Iraq in [52],

where self-excitation is one of the key qualitative features of the process.

We assume that the interaction events for each pair of agents occur independently ac-

cording to a Hawkes process. This assumption of independence is based on the tentative

conclusion of [80]. That is, the network of Hollenbeck gangs may be in a homogeneous state,

meaning that gangs are not tightly coupled to one another. Thus, if gang α is fighting with

gang β, and gang γ begins attacking α, then α easily switches away from its rivalry with β to

begin fighting γ. This switching is largely a random, independent event in the homogeneous

state.

We make no exclusions for inactive pairs since for those we simply have µ = 0, and it is

also useful to set θ = 0 to avoid confusion in the following analysis. For the function g, as

in [22], we use an exponential distribution, which gives

λ(t) = µ+ θ
∑
ti<t

ωe−ω(t−ti). (2.2)

Here ω−1 sets the time scale over which the overall rate λ(t) returns to its baseline level

µ after an event occurs [54]. From the behavioral point of view, θ represents the average

number of direct offspring for each event and ω−1 is the expected waiting time until an

offspring. To indicate that each pair of agents has its own interaction parameters, we use

index notation and write

λαβ(t) = µαβ + θαβ
∑
tαβi <t

ωαβe
−ωαβ(t−tαβi ), (2.3)

with µαβ, θαβ, ωαβ being constants, unique for each pair, and summation over all previous
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events between the agents α and β. If no confusion is possible, we will omit the indices αβ

to simplify the notations in the future.

t, days

λαβ , 10−2 days−1

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

t, days

λβγ , 10−2 days−1

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

t, days

λγα, 10−2 days−1

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

Figure 2.3: Data generated according to a Hawkes process with the same parameters for

each pair of agents: µ = 10−2 days−1, ω = 10−1 days−1, θ = 0.5.

In Figure (2.3), we present an example of data generated according to the described model

(2.3) for a network consisting of three agents α, β, and γ. Here, the same parameters are

used for each pair: µ = 10−2 days−1, ω = 10−1 days−1, θ = 0.5. These have approximately

the order of magnitude estimated in [22] for the Los Angeles gang network.

Note here that obtaining the interaction parameters based on given data is a separate

problem which is not addressed in the current work. We have some discussion of this in

Chapter 4. In what follows, we assume that all the interaction parameters are known and

use them to predict missing participants of the incomplete events.
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CHAPTER 3

Data Reconstruction

3.1 Reconstruction Method

We will use the following notation:

N − total number of events

n − number of incomplete events

k − number of agents

K − total number of pairs = k(k − 1)/2

To solve the prediction problem in question one could consider the likelihood function,

defined on the space of all possible event lists, corresponding to different ways of filling in

the missing data, which is to be maximized in order to get the most likely one. Given any

complete event list, with no missing data, its likelihood is given by (see, for example, [22])

L =
∏
αβ

∏
tαβi

λαβ
(
tαβi
)
. (3.1)

The first product is over all possible unordered pairs of agents, and the second one is over

all events for a fixed pair.

Note that maximizing (3.1) is a combinatorial type problem since the set of all agent

pairs is discrete. One of the possible approaches to this problem would be to use simulated

annealing [73] or Monte Carlo Markov Chain [7] techniques to estimate the maximum of

the likelihood. These methods though being probabilistic metaheuristics usually require

problem-dependent tuning, and can be rather slow. Another technique is to consider an
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approximation to the real likelihood function (3.1). Some examples of pseudolikelihood

methods for point processes were introduced for instance in [67, 69]. Note however, that

no matter what approximation we take it still will be a function defined over a discrete

set. Unfortunately then, there seems to be no significantly more optimal way than “full

search” for solving this problem exactly in the general case, which is very inefficient since its

complexity depends exponentially on n.

The goal is therefore to make the maximization problem computationally less expensive,

while maintaining the plausibility of the predictions. To do this, one could define a smooth

extension of (3.1) and then look for its maximum, so that some standard continuous opti-

mization method like gradient ascent could be used. This could be achieved by allowing each

incomplete event to move continuously between the timelines. However, such an approach

is not naturally applicable to (3.1) due to its multiplicative structure.

We therefore propose the following. We design some reasonable approximation to the real

likelihood function (3.1), such that its continuous extension is physically meaningful. Let

us start with the following simple example. Consider a network consisting of three agents

α, β, and γ with all pairs having the same interaction parameters. Suppose only one event

is incomplete and there is no information about its participants. Intuitively, because of the

self-exciting nature of the process, the event is less likely to belong to the pairs with no

nearby interaction, and more likely to belong to those for which it can be considered as a

part of a cluster. For instance, in the situation shown in Figure (3.1), agents β and γ are

the most likely participants of the incomplete event, as this would place it within a cluster.

t

t

t

αβ

βγ

γα

Figure 3.1: Example of reconstruction based on temporal clustering: agents β and γ are

the most likely participants of the incomplete event, as this would place it within a cluster.
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To give this idea a quantitative formulation, we note that clusters correspond to the

periods of time with higher values of the intensity functions, which can be seen in Figure

(2.3). Hence, for a missing event it would be reasonable to predict the pair with the highest

intensity at the moment of the event. It also makes sense from the probabilistic point of

view, because given the fact that an event happened at time t the probability of pair αβ

being involved is proportional to λαβ(t).

Now we construct our energy functional: an approximation to the likelihood function

(3.1) on the space of all possible event lists, corresponding to different ways of filling in the

missing data, which is to be maximized in order to get the “most likely” one. Given any

complete event list, with no missing data, we define its energy as

Λ =
∑
αβ

∑
tαβi

λαβ
(
tαβi
)
. (3.2)

The first summation is over all possible unordered pairs of agents, and the second one is over

all events for a fixed pair. Here we basically say that the “chances” of a pair to be involved

in an interaction event are equal to its intensity function value at that time. Then we take

the sum over all events. Roughly speaking, the metric defined by (3.2) assigns higher values

to the event lists with denser clusters, which is precisely what we need to get a reasonable

prediction. If no confusion is possible we will replace tαβi with i in the summation index,

keeping in mind that each pair of agents has their own timeline and system of indices for

the events on it. Substituting (2.3) into (3.2) gives

Λ =
∑
αβ

∑
i,j

δijµαβ +
1

2
(1− δij)θαβωαβe−ωαβ |t

αβ
i −t

αβ
j |. (3.3)

Thus, Λ is decoupled into the sum of the energies of the events themselves, determined by

the background rates, and the sum of the pairwise interaction energies between the events on

the same timeline due to self-excitation. Clustering leads to stronger interaction, increasing

the value of Λ. Clearly, functional (3.3) is invariant with respect to time inversion, which

means that each event affects its successors and predecessors in the same way.

As alternative to (3.2), one could normalize the intensity functions over all pairs of agents
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to make them add up to 1, and define the energy functional as

Λ̃ =
∑
αβ

∑
tαβi

λαβ
(
tαβi
)∑

α′β′ λα′β′
(
tαβi
) , (3.4)

an approach that might seem to be more natural from the probabilistic point of view. How-

ever it makes the final optimization problem to be solved much more nonlinear and has a

drawback discussed in Section 3.2.

Again, maximizing the energy functional (3.2) or (3.4) is a combinatorial type problem

since the set of all agent pairs is discrete, and there seems to be no significantly more optimal

way than “full search” for solving it in the general case, which is very inefficient. However,

unlike the likelihood function (3.1), it admits a physically meaningful smooth extension.

This can be obtained by distributing each of the incomplete events over the timelines with

weights that “add up”, in some sense, to 1. Thus, in Figure (2.1), we would replace the

white circles with black ones and add weights to each of those; the complete events naturally

receiving weight 1. We can interpret this to mean that each incomplete event occurred

partially on every timeline with effect (the jump in the intensity function) proportional to

the corresponding weight. This new continuous maximization problem not only gives the

most likely participants of an event, but also assigns a weight to each pair showing how likely

that pair is to be involved.

To avoid misunderstanding, let us specify how we enumerate the events on a timeline,

which does matter now due to the normalization coupling of the pairs. The reader can use

Figure (3.2) as a reference. We start with incomplete events and assign them numbers from

1

1

1

2

2

2

3

3

3

t

t

t

4 5 6 7

4 5 6 7 8

4 5 6 7 8 9 10

Figure 3.2: Events enumeration example.

1 to n. The order here is not important, as long as it is the same for all timelines. Then,
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for each timeline we assign numbers to the complete events starting from (n + 1). Thus,

there is a separate event indexing system for each timeline, with indices coinciding for the

incomplete events.

Using l2-normalization for the weights, we get the following formulation of the problem

max

{∑
αβ

∑
i,j

[
δijµαβm

αβ
i +

+1
2
(1− δij)θαβωαβe−ωαβ |t

αβ
i −t

αβ
j |mαβ

i mαβ
j

]}
∑

αβ

(
mαβ
i

)2
= 1, ∀i = 1, . . . , n

mαβ
i ≥ 0, ∀i = 1, . . . , n, ∀αβ

, (3.5)

where mαβ
i denotes the weight of the event number i on timeline αβ. As we mentioned

before, the complete events have weight 1, so mαβ
i ≡ 1 for i > n. The objective function

is maximized with respect to mαβ
i for i ≤ n, given the normalization and non-negativity

constraints.

One could alternatively choose to use l1-normalization for the weights, which again might

seem to be more natural from the probabilistic point of view. The problem in that case is

max

{∑
αβ

∑
i,j

[
δijµαβm

αβ
i +

+1
2
(1− δij)θαβωαβe−ωαβ |t

αβ
i −t

αβ
j |mαβ

i mαβ
j

]}
∑

αβm
αβ
i = 1, ∀i = 1, . . . , n

mαβ
i ≥ 0, ∀i = 1, . . . , n, ∀αβ

. (3.6)

However, this method is unstable with respect to the input data, as we will see in Section

3.2.

Note here that the discrete, combinatorial version of this method can be obtained from
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(3.5) or (3.6) by forcing all weights to be integers

max

{∑
αβ

∑
i,j

[
δijµαβm

αβ
i +

+1
2
(1− δij)θαβωαβe−ωαβ |t

αβ
i −t

αβ
j |mαβ

i mαβ
j

]}
∑

αβm
αβ
i = 1, ∀i = 1, . . . , n

mαβ
i ∈ {0, 1}, ∀i = 1, . . . , n, ∀αβ

. (3.7)

3.2 Examples

The purpose of this section is to discuss a few examples that will reveal some useful properties

of the problem (3.5).

3.2.1 Example 1: Timescale Detection

Suppose N = n = 2, so we have two incomplete events, and suppose we do not have any

information at all about the participants. For simplicity we also assume µαβ ≡ 0 and θαβ ≡ 1.

Then the problem to be solved according to (3.5) is
max

∑
αβ ωαβe

−ωαβ∆tmαβ
1 mαβ

2∑
αβ(mαβ

i )2 = 1, ∀i = 1, 2

mαβ
i ≥ 0, ∀i = 1, 2, ∀αβ

, (3.8)

with ∆t being the time interval between the events. Note that (3.8) can be written conve-

niently in vector form as 
maxmT

1Dm2

‖m1‖2 = ‖m2‖2 = 1

mαβ
i ≥ 0, ∀i = 1, 2, ∀αβ

, (3.9)

where we have used the notations
D = diag{ωαβe−ωαβ∆t} ∈ RK×K

mi = {mαβ
i } ∈ RK , i = 1, 2

. (3.10)
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From linear algebra, it is well-known that the objective function in (3.9) is maximized when

m1 = m2 = eα′β′ , the unit vector, such that

α′β′ = arg max
αβ
{ωαβe−ωαβ∆t}. (3.11)

The maximum of ωe−ω∆t is achieved when ω = 1
∆t

. Hence the solution of the problem (3.8)

corresponds to the pair with self-excitation timescale closest to ∆t.

Recall that the self-excitation timescale represents the average time until a repeat event

occurs. Thus, since all background rates are equal to zero, and therefore the second event

must be an offspring of the first one, our method indeed gives the most likely participants. Of

course, for prediction purposes the distribution of the weights is not very realistic, because it

rules out the possibility for all other pairs to be involved. But, as we will see further, there

are other mechanisms that make the solution more regularized, which we do not see here

due to a specific and, in fact, unrealistic structure of the example. Indeed, this example is

in some sense pathological, as there is no way to explain the occurrence of the first event.

However, we can think of it as a limiting case when

∑
αβ

µαβ � min
αβ
{ωαβe−ωαβ∆t}. (3.12)

Then the first event is a background one, which happened after waiting for sufficiently

long time, and the second one is due to self-excitation, because the probability of it being

a background event from some timeline is much less than the probability of it being an

offspring of the previous event, as follows from (3.12).

Consider now the alternative energy functional (3.4) with normalization at each time

point, introduced in Section 3.1. Clearly, the maximum value it can achieve, for the example

in question, is 1. It happens whenever both events completely belong to the same pair

of agents. Thus, this model does not “see” the dependence of clustering density on self-

excitation timescale, and leads to a degenerate solution.
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3.2.2 Example 2: Regularization

Suppose N = n = 1, so we have only one event which is incomplete, and suppose we do not

have any information at all about the participants. Then the problem to be solved according

to (3.5) is 
max

∑
αβ µαβm

αβ

∑
αβ

(
mαβ

)2
= 1

mαβ ≥ 0, ∀αβ

. (3.13)

Problem (3.13) can be written conveniently in vector form as
maxµTm

‖m‖2 = 1

mαβ ≥ 0, ∀αβ

, (3.14)

where we have used the notations 
µ = {µαβ} ∈ RK

m = {mαβ} ∈ RK

. (3.15)

The maximizer of (3.14) is well-known from linear algebra to be

m =
µ

‖µ‖2

. (3.16)

Thus, the optimal weights, according to our method, are proportional to the corresponding

background intensity rates. This is exactly what follows from the probabilistic approach.

Indeed, we are dealing with the case where no self-excitation takes place, since there is only

one event. Therefore the probability of a pair to be involved in the event is proportional to

its background intensity rate.

Consider now the alternative model (3.6) with l1-normalization, mentioned in Section

3.1. For this example it gives the following optimization problem
maxµTm

‖m‖1 = 1

. (3.17)
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Clearly, the objective function in (3.17) is maximized when m = eα′β′ , the unit vector, such

that

α′β′ = arg max
αβ
{µαβ}. (3.18)

We see that the model picks the pair with the highest background rate, assigns weight 1

to it and 0 to the others. However, this is not the most desirable solution. Suppose, for

instance, that all background rates are approximately the same. Then, it is not reasonable

to choose one pair over the others, since all of them are almost equally likely to be involved.

Unfortunately, this is a general property of model (3.6). It will always either assign all the

weight to one pair for each incomplete event, never creating any distributions, or will give

a degenerate solution. Indeed, the normalization constraints and the objective function, in

each of its arguments, are all linear.

Model (3.5) does not have such a drawback for this example. It does not just pick the

most likely participants of the event, but assigns weights to all pairs indicating how likely

each of them is to be involved. This can be thought of as some sort of regularization property.

3.2.3 Discussion

As we mentioned in Section 3.1, the objective function in (3.5) can be thought of as a sum

of the energies of the events. Formally, if we ignore constant terms, it consists of two parts:

quadratic terms, corresponding to the interaction of the incomplete events, and linear terms,

corresponding to the energy of the incomplete events in the presence of the complete events

and background rate values. The examples above were targeted to examine these parts

separately to reveal their roles in the reconstruction process.

In the first example we considered the quadratic part of the energy. We have seen that

the incomplete events tend to gather on those timelines where their interaction energy is the

highest, which leads to aggressive cluster formation up to assigning all the weights to the

same pair of agents.

On the other hand, the linear terms express the influence of the complete events and
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background rates, and do not allow the incomplete events to deviate too much from already

existing clustering structure. Moreover they regularize the solution, which represents the

degree of uncertainty in the prediction, as demonstrated in the second example.

The methods arising from l1-normalization (3.6) and from the alternative energy func-

tional (3.4) have each shown some undesirable properties in these examples, and we will not

consider them further. Of course, one is not restricted to only using l1 or l2 normalization,

and one could consider a general lp normalization of the weights or look at a hybrid con-

straint consisting of both l1 and l2 terms (or lp terms). In the hybrid case, a constraint of

the form ∑
αβ

f
(
mαβ

)2
+ (1− f)mαβ = 1

could be employed, where f ≤ 1 would represent how much emphasis to put on the l2 term

or the l1 term. Though, for simplicity, we do not consider such a constraint in this work, it

remains a potential avenue for future exploration.

3.3 Analysis

Note from Figure (2.1) that the white circles naturally form a K × n matrix and our goal is

to determine its entries. We denote the matrix as X = {xij}. For future reference it will be

useful to express X in terms of its rows and columns

X =


rT1
...

rTK

 =
(
c1 · · · cn

)
. (3.19)

Using these notations, problem (3.5) can be written as

∑K
i=1 r

T
i Airi + rTi bi → max

cTj cj = 1, ∀j = 1, . . . , n

xij ≥ 0, ∀i = 1, . . . , K, ∀j = 1, . . . , n

. (3.20)
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Here Ai = {ajli } is the symmetric n × n matrix of the interaction coefficients between the

incomplete events on the ith timeline, and bi = {bji} is the column of size n of the energy

coefficients for the incomplete events in the presence of the complete events and background

rate on the ith timeline. Clearly, the entries ofAi and bi are nonnegative, for all i = 1, . . . , K.

Theorem 3.3.1. For the problem (3.20):

(i) There exists a global maximizer.

(ii) Every local maximizer (or even a stationary point) is a global maximizer.

(iii) If all bji are strictly positive then the maximizer is unique.

Proof. The objective function is continuous and the admissible set, given by the constraints,

is compact. This proves (i). Define yij = x2
ij. Then the problem (3.20) becomes

∑K
i=1

[∑n
j,l=1 a

jl
i

√
yijyil +

∑n
j=1 b

j
i

√
yij

]
→ max∑K

i=1 yij = 1, ∀j = 1, . . . , n

yij ≥ 0, ∀i = 1, . . . , K, ∀j = 1, . . . , n

. (3.21)

The admissible set in (3.21), given by the constraints, is convex. We will show that the

objective function is concave on it, and strictly concave if all bji are strictly positive, which

implies (ii) and (iii).

Note that ajli
√
yijyil is concave for all i = 1, . . . , K and j, l = 1, . . . , n. This follows from

the fact that for all a, b, c, d ≥ 0 and 0 < λ < 1 we have√(
λa+ (1− λ)c

)(
λb+ (1− λ)d

)
≥ λ
√
ab+ (1− λ)

√
cd. (3.22)

Indeed, squaring both sides of (3.22) gives a Cauchy-type inequality

cb+ ad ≥ 2
√
abcd, (3.23)

after simplification. Now it suffices to show that the function

fj(y1j, . . . , yKj) =
K∑
i=1

bji
√
yij (3.24)

18



is concave for all j = 1, . . . , n. That is

K∑
i=1

bji

√
λŷij + (1− λ)y̌ij ≥

K∑
i=1

bji

[
λ
√
ŷij + (1− λ)

√
y̌ij

]
(3.25)

for all admissible distinct {ŷij}Ki=1, {y̌ij}Ki=1 and 0 < λ < 1. We further wish to show that

(3.24) is strictly concave, that is the inequality (3.25) must be strict, if all bji are strictly

positive. But both are true since the function
√
x is strictly concave on {x : x ≥ 0}. This

completes the proof.

If all pairs are active, then all background rates are nonzero, and we automatically have

all bji strictly positive, which implies the uniqueness of prediction in accordance with the

Theorem 3.3.1. When some pairs are inactive part (iii) of the Theorem 3.3.1 is not applicable

directly. Indeed, if for example timeline i is inactive, then there are no complete events on

it and the corresponding background rate is 0, hence bi = 0. Note however that in this case

adding the constraint ri = 0, or simply excluding the timeline i from consideration, gives

a problem with a smaller unknown matrix equivalent to (3.20). Thus, if we eliminate all

inactive pairs in this way, we get a problem with all pairs in question being active, which

guarantees the uniqueness of prediction.

So far we implicitly assumed that we had no information at all about the participants of

the incomplete events and each pair was considered as a possible candidate for prediction.

Of course, if one of the participants of an event is known, then the pairs without this agent

can not be in involved, and the corresponding entries of X must be equal to 0, which means

we have additional constraints of the form xij = 0 for the problem (3.20). These constraints

however do not affect the convexity of the admissible set in the coordinates yij = x2
ij.

Therefore all results of the Theorem 3.3.1 remain valid.

3.4 Results

In this section we present and discuss the results of various tests of the proposed recon-

struction method. Since the data from the Los Angeles gang network is incomplete, and the
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ground truth and interaction parameters for it are unavailable, it is not quite suitable for

this purpose. Instead, we generate synthetic data using a Hawkes process (2.3), throw out

some of the data at random, and then apply our algorithm to reconstruct it.

To evaluate the performance of our algorithm, we only focus on the ordering of the

various mαβ for each incomplete event i. Specifically, we determine for each incomplete

event i the weights mi for that event on the various timelines, order them from lowest to

highest, and find the corresponding rank of the ground truth timeline for that event. This is

done for two major reasons. First, our method (3.5) does not assign proper probabilities to

the various timelines, only weights that should be interpreted as being related to probability

in a monotonic way. Second, from an operational point of view, the authorities are not

very concerned with the actual probabilities with which each gang committed a given crime,

but rather with a simple ranking of gangs from most likely to least likely, to prioritize their

investigation.

As a first step, we compare our continuous method (3.5) to two others: one derived from

the likelihood function (3.1) and one using the discrete model (3.7). However, note that

the methods (3.1) and (3.7) provide likelihoods (or energies) only for full allocations A of

incomplete events, rather than one likelihood for each timeline per event. To bypass this

issue, we simply define the likelihood m̂αβ
i (f) that incomplete event i belongs to timeline αβ

under metric f to be

m̂αβ
i (f) =

∑
Aαβi

f(A) , (3.26)

where Aαβi is meant to represent only those allocations in which incomplete event i is at-

tributed to timeline αβ, and f = L for (3.1) and f = Λ for (3.7).

As mentioned previously, the methods (3.1) and (3.7) are of combinatoric complexity,

so we limit our testing here to a relatively small system with N = 40, n = 4, k = 4,

K = 6. Here, we assume no knowledge of the participants in incomplete events, so that each

may be assigned to any of the K = 6 timelines. Simulations were run 10,000 times using

parameters µ = 10−2 days−1, ω = 10−1 days−1, and θ = 0.5 for each pair of agents, which
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have approximately the order of magnitude estimated in [22]. Each simulation generated

a ranking of the timelines for each incomplete event, and the percentages of incomplete

events whose ground truth timelines were given certain ranks are shown in Table 3.1. Note

Table 3.1: Continuous method (3.5) compared to methods (3.1) and (3.7), for N = 40,

n = 4, k = 4, K = 6, µ = 10−2 days−1, ω = 10−1 days−1, and θ = 0.5.

Method Top 1 Top 2 Top 3 Top 4 Top 5

(3.1) 47.3% 68.1% 79.8% 87.7% 94.0%

(3.5) 47.1% 68.1% 79.7% 87.6% 94.1%

(3.7) 47.0% 68.1% 79.7% 87.6% 94.0%

that the three methods perform almost identically, each placing the correct timeline at top

likelihood approximately 47% of the time, in the top two likelihoods approximately 68% of

the time, and in the top three likelihoods approximately 80% of the time. Since method

(3.5) yields nearly indistinguishable solutions to those of (3.1) and (3.7), but is vastly more

computationally effective, we focus only on this continuous method for the remainder of this

section.

We next test our continuous method using datasets that more closely mimic the gang

rivalry data. In all the experiments below, we have exactly one participant unknown for

every incomplete event, which is the case for most of the gang data. Also, unless specified

otherwise, we assume full connectedness of the network graph and use the same interaction

parameters for each pair of agents as used above: µ = 10−2 days−1, ω = 10−1 days−1, θ = 0.5.

Table 3.2 demonstrates the performance of the continuous method (3.5). It is organized

as follows. The first three columns describe the dimensions of the network and the data

the method was applied to, and the last three indicate how often, on average, a ground-

truth unknown pair was in the top one, top two, and top three weights of the predicted

distribution. The ? value of k corresponds to the real Los Angeles gang network (see Figure

(2.2)), which is not a fully connected graph. The “Guessing” rows show the results that

would be obtained by random guessing.
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First we note that, in terms of prediction quality, the Los Angeles gang network roughly

corresponds to a fully connected 6-nodes graph. This actually makes sense, since each gang

has about 5 rivalries on average. Second, the prediction results depend rather mildly on the

fraction of incomplete events, which implicitly confirms the fact that reconstruction model

(3.5) captures the qualitative features of interaction process (2.3) rather well.

As for the results themselves, we can see that they are significantly better than those

obtained by just random guessing. At the same time they are not perfect. To see why this

is so we need to have a closer look at how they depend on the parameters of the system: µ,

ω, and θ. If self-excitation is too weak, that is ω/µ� 1 and θ � 1, then the rate (2.3) will

always stay near µ and the clusters will be vague and widespread. Hence the method will

give almost uniform distributions of weights, and choosing the pair with the biggest weight

will be equivalent to random guessing. On the other hand, if self-excitation is very strong,

that is ω/µ � 1 and θ ' 1, then the clusters will be sharp, the distribution vectors will be

sparse, and choosing the pair with the biggest weight will give a reliable prediction.

Figure (3.3) confirms the above reasoning. Here we applied our method to a fully-

connected 6-agents network, with N = 400, n = 100, varying the values of θ and τ =

log10(ω/µ). For each distribution vector of weights, we simply picked the timeline with the

highest weight and plotted average percentage of correct predictions obtained in this way.
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Figure 3.3: Dependence of the average percentage of correct predictions, obtained by choos-

ing the pair with the highest weight for each distribution vector, on θ and τ = log10(ω/µ),

for a fully-connected 6-agents network, with N = 400, n = 100.
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Table 3.2: Continuous model (3.5) performance results. The first three columns describe

the dimensions of the network and the data the method was applied to, and the last three

indicate how often, on average, a ground-truth unknown pair was in the top one, top two,

and top three weights of the predicted distribution. The ? value of k corresponds to the

real Los Angeles gang network, see Figure (2.2), which is not a fully connected graph. The

“Guessing” rows show the results that would be obtained by random guessing.

k N n Top 1 Top 2 Top 3

5 400 50 57% 80% 92%

5 400 100 56% 79% 91%

5 400 200 54% 76% 90%

5 Guessing 25% 50% 75%

7 400 50 47% 69% 82%

7 400 100 46% 68% 80%

7 400 200 45% 65% 77%

7 Guessing 17% 33% 50%

9 400 50 42% 62% 73%

9 400 100 41% 60% 72%

9 400 200 39% 57% 69%

9 Guessing 13% 25% 38%

? 400 50 50% 72% 83%

? 400 100 49% 71% 82%

? 400 200 48% 68% 80%
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CHAPTER 4

Conclusion

Retaliatory gang violence is a large problem in many metropolitan areas around the globe,

and to curtail such violence, law enforcement agencies need to know who the participants

were in a given altercation. We have shown that, under the assumptions that retaliatory

violence on a gang network follows a Hawkes process of the form (2.3), incomplete data

on the participants of the offenses can be reconstructed using a computationally effective

algorithm that maximizes an energy functional under a set of constraints – method (3.5).

Moreover, when focusing on the likelihood rankings of gangs for incomplete events, method

(3.5) seems to perform on par with a more probability-based algorithm (3.1) that is too

complex to use on realistically sized datasets. Finally, we have shown that the performance

of our method is deeply connected to the parameters of the Hawkes process in question, and

in certain regimes may predict the correct participants with very high likelihood.

Of course, there are issues to overcome if our method is to be used on actual gang

violence data, rather than on simulated events. Firstly, for real datasets, the parameters

of the process must be estimated from the events, rather than being known a priori. One

could imagine accomplishing this in an iterative way: use the complete events to estimate

parameters, use these parameters to estimate participants in unknown events, then use

these estimates to re-estimate the parameters, continuing the cycle until convergence (if

convergence is indeed obtained). To implement this, however, one must choose how to use the

estimated participants of events when re-estimating the interaction parameters, something

that is not entirely clear given that our estimates of the participants are not probabilities.

This could perhaps be accomplished via the expectation-maximization algorithm [19]. In this
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case one would first have to consider the real likelihood function, incorporating this time both

missing events and unknown parameters, and then come up with a suitable approximation for

it that would make the problem less computationally expensive and yield plausible results.

Secondly, in real datasets one must be concerned with systematic deviation between

the data and actual occurrences. Certain types of gang violence may be chronically under-

reported in ways that will skew the detection of self-excitation or cause events to be allocated

in an improper way. A thorough understanding of how this might affect our estimates should

be had before trusting the results completely.
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Part II

Constitutive Modeling in Solid

Mechanics for Graphics Applications
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CHAPTER 5

Introduction

Physically based simulation of deformable solids is an indispensable tool for creating realistic

virtual environments [3, 45, 24]. Typically, it involves numerical methods that evolve discrete

geometric models over time. In addition, one needs to specify the material properties of an

object to be simulated by defining a constitutive model : an equation relating stress arising

in the material with the deformation it undergoes. It determines the look and dynamics of

the material and requires careful consideration when a certain type of behavior needs to be

produced.

Constitutive modeling for different kinds of materials has been thoroughly studied in

physics and mechanical engineering literature [8, 92, 74, 14]. Those models however may not

be directly applicable to simulation in graphics, for a number of reasons. Firstly, physics is

usually concerned with simple tests that can be experimentally verified. In graphics, on the

other hand, it is often necessary to demonstrate the full richness of a certain phenomena.

Needless to say, a constitutive model that can handle the whole range of required behaviors

might not have been completely developed. Examples usually include materials having

either complex inner structure or phase transition, e.g. snow. Secondly, while simulation in

graphics considers many of the same problems that computational physics does, it also has a

unique perspective. A fundamental measure of quality in graphics is whether or not the final

image looks plausible. Of course physical accuracy helps achieve that to large extent, but by

no means is it the main goal. Naturally, practitioners are less interested in the root causes

of physical phenomena but rather seek to have direct and intuitive control over the final

result, which is the opposite of how material models get designed and used in physics and
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mechanical engineering. Finally, a good constitutive model must be capable of providing

robust and stable results in all possible scenarios, including extremely large deformations

and even inversion of the material [40, 86].

In what follows we present our work that addresses some of the issues in constitutive

modeling for graphics applications described above. In Chapter 6 we consider large strain

deformable object simulation which was introduced to computer graphics by [88]. Unfor-

tunately, simulation of large deformations with a Lagrangian mesh is notoriously unstable

and error-prone. Although many researchers have shown the effectiveness of adaptive refine-

ment [78, 18, 31, 11] and hybrid Lagrangian/Eulerian approaches [4, 95, 96, 93], computer

graphics researchers tend to use purely Lagrangian methods with a topologically static mesh.

The primary problem for Lagrangian methods is the inversion of mesh elements that poorly

approximate highly deformed regions. This motivated the development of models that are

well defined when the deformation mapping has negative Jacobian. Irving et al. developed

the invertible finite element (IFE) framework in [40] and [86] to extend arbitrary elastic con-

stitutive models to inverted configurations. The “warped stiffness” [61, 76, 99, 62, 23] and

corotated hyperelasticity [13, 56] models are also meaningfully defined through inversion.

Another notable model defined through inversion was developed in [89].

We build on the IFE framework in [40] and [86] to provide a method for the practical

extension of an arbitrary isotropic hyperelastic energy density to inverted configurations.

Hyperelasticity refers to constitutive models for which the stress is determined as the gra-

dient of an underlying scalar energy density. Our extension matches the original model for

singular values on the uninverted side of a convex extrapolation threshold surface. In fact,

we provide a heuristic that prevents the need for the costly SVD whenever the material is in

this uninverted region. The smoothly extended energy allows for accurate and unambiguous

definition of the stress and stress derivatives needed for force computation and implicit time

integration. We show that this extension provides significantly superior behavior through in-

version than both the original IFE and the corotated models in [13] and [56]. Lastly, we show

that our new notion of a primary contour provides useful analysis of a model’s robustness to
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large deformation.

In Chapter 7 we develop a novel snow simulation method utilizing a user-controllable

constitutive model defined by an elasto-plastic energy density function integrated with a

hybrid Eulerian/Lagrangian Material Point Method (MPM).

Snow dynamics are amazingly beautiful yet varied. Whether it is powder snow fluttering

in a skier’s wake, foot steps shattering an icy snow crust or even packing snow rolled into balls

to make a snowman, it is snow’s rich repertoire that makes it simultaneously compelling for

storytelling and infuriatingly difficult to model on a computer. Artists typically use simpler

techniques combined in various ways to achieve snow effects [47, 15, 48], but these approaches

do not produce the full richness of snow and are labor intensive. This suggests the need for

a specialized solver that is adept at the full range of snow phenomena.

Specialized solvers for specific phenomena are frequently used in graphics and compu-

tational physics because achieving maximum resolution (and thus visual quality) requires

efficiency. While a fluid simulator can produce solid-like elastic effects (and vice versa), it

is not the most optimal strategy. When solids and fluids are needed simultaneously, re-

searchers have developed two-way coupled systems to get good accuracy and performance

for both phenomena. Unfortunately, snow has continuously varying phase effects, sometimes

behaving as a rigid/deforming solid and sometimes behaving as a fluid. Thus, instead of dis-

crete coupling we must simultaneously handle a continuum of material properties efficiently

in the same domain, even though such a solver may not be most efficient for a single discrete

phenomenon.

We present two main contributions that achieve these aims. First, we develop a semi-

implicit Material Point Method (MPM) [84] specifically designed to efficiently treat the

wide range of material stiffnesses, collisions and topological changes arising in complex snow

scenes. To our knowledge, this is the first time MPM has been used in graphics. MPM meth-

ods combine Lagrangian material particles (points) with Eulerian Cartesian grids. Notably,

there is no inherent need for Lagrangian mesh connectivity. Many researchers in graphics

have experimented with hybrid grid and particle methods. For example, [97] simulate sand
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as a fluid using a PIC/FLIP incompressible fluid technique. In fact, MPMs were designed

as a generalization of the PIC/FLIP solvers to computational solids. As with PIC/FLIP,

MPMs implicitly handle self-collision and fracture with the use of the background Eulerian

grid. This is essential given the many topological changes exhibited by practical snow dy-

namics. Our second contribution is a novel snow constitutive model designed for intuitive

user control of practical snow behavior. This is also designed to achieve our goal of de-

scribing the many phases of snow behavior with one constitutive relation. To do this, we

borrow from the vast engineering literature on snow and demonstrate that an elasto-plastic

treatment is an effective means of handling the transition between many different behaviors

including flowing, clumping, breaking and more.

Note: For quick reference on solid mechanics and the notations used in the following

chapters we refer the reader to Appendix A.
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CHAPTER 6

Energetically Consistent Invertible Elasticity

6.1 Isotropic Hyperelasticity

We limit our discussion of elasticity to the constitutive stress/strain relationship. We provide

enough detail that any spatial or temporal discretization technique can be used in practice.

Specifically, we will describe how to compute stress needed for elastic forces and stress

linearizations needed for implicit time stepping. Note that our energy-based approach works

naturally with variational integrators like those in [43].

We assume a continuum description of the deformation φ : Ω0 → R3 that maps initial (or

material) points X in the initial configuration Ω0 to points x = φ(X) in world space. The

elastic force per unit volume in the continuum body is ∇X · P , where P is the first Piola-

Kirchoff stress [29]. For hyperelasticity, the first Piola-Kirchoff stress is determined from

the energy density Ψ(F ) as P = ∂Ψ
∂F

, where F = ∂φ
∂X

is the deformation gradient. We limit

our focus to isotropic models for which the energy density can be written as Ψ(F ) = Ψ̂(Σ̂),

where F = UΣV T by the singular value decomposition and Σ̂ = diag(Σ) = (σ1, σ2, σ3).

Note that isotropy is equivalent to defining the energy in terms of the principal invariants

I1 = σ2
1 + σ2

2 + σ2
3, I2 = σ2

1σ
2
2 + σ2

2σ
2
3 + σ2

1σ
2
3, and J = σ1σ2σ3 [29]. This implies that the

energy is invariant under permutations of the singular values. In this case, it can be shown

that the first Piola-Kirchoff stress has the form P (F ) = UP̂ (Σ̂)V T where

P̂ (Σ̂) =


P̂1(Σ̂)

P̂2(Σ̂)

P̂3(Σ̂)



32



σ1

σ2Corotated

σ1

σ2Our Model

Figure 6.1: A 2D mattress is stretched by two sides and the evolution of its elements is

shown in the principal stretches space. The arrows (orange) show the downhill direction

of the energy gradient. The gray region is invalid in accordance with the IFE convention

[40]. The green curves show singular value trajectories from the undeformed configuration

(1, 1) (yellow dot) to the final configuration (colored dots) for each element in the mesh as

it is stretched. The trajectories tend to follow the primary contour (yellow). The corotated

model primary contour crosses the axes, leading to nonphysical inversion (red) for sufficiently

large stretches.

with P̂i = Ψ̂σi = ∂Ψ̂
∂σi

. Furthermore, the linearization of the stress around a given F

is δP = ∂P
∂F

(F ) : δF and in the case of isotropy, this can be shown to satisfy δP =

U
(
∂P
∂F

(Σ) :
(
UT δFV

))
V T . Although the term ∂P

∂F
(Σ) was shown to have a block diagonal

structure in terms of the invariants of F in [86], we prefer to express this block structure

in terms of the principal stretches as in [81]. If we reorder the 3 × 3 × 3 × 3 fourth order

tensor ∂P
∂F

(Σ) as a 9× 9 matrix using the convention that a 3× 3 matrix S is reordered as

a 9-vector with components (s11, s22, s33, s12, s21, s13, s31, s23, s32), then ∂P
∂F

(Σ) can be shown

(see Appendix B) to have the four diagonal blocks A, B12, B13 and B23 with

A =


Ψ̂σ1σ1 Ψ̂σ1σ2 Ψ̂σ1σ3

Ψ̂σ2σ1 Ψ̂σ2σ2 Ψ̂σ2σ3

Ψ̂σ3σ1 Ψ̂σ3σ2 Ψ̂σ3σ3


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σ1

σ2 Increasing timeCorotated

Figure 6.2: Three triangles are allowed to relax from different initially deformed configura-

tions. Their trajectories in singular value space are shown with corresponding colors on the

left. Note the strong attraction to the primary contour (yellow) causes the blue triangle to

invert (shown in red).
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Figure 6.3: We stretch a tetrahedron with its base fixed to a plane. The plots show the

corotated energy gradients in constraint planes of increasing σ1. The equilibrium singular

values are shown in blue. The yellow line is the intersection of the constraint plane with the

primary contour. As the tetrahedron is stretched, the line shifts. The primary contour does

not intersect the third slice, but we show in dark gray where it would intersect if it were

extended into the invalid region (gray). The primary contour draws the configuration into

a minimum at the energy kink, leading to nonphysical oscillation. For illustrative purposes

we slightly abused the IFE convention on the constraint plane C to demonstrate how the

configuration is driven towards the kink, although in fact it never can get to the invalid

region and keeps “bouncing back.”
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Figure 6.4: We plot the energy surface Ψ̂(c, σ2, σ3) for the example in Figure 6.3 for c = 1

(left) and c = 5 (right). The plots on top show the energy profile along the line σ2 = σ3,

which is orthogonal to the kink at σ2 + σ3 = 0. The blue dots show the quasistatic solutions

that would be obtained assuming a smooth energy profile. In the image at the left, the

minimizer is away from the energy kink. However, as the top vertex is stretched the minimum

approaches the kink which leads to non-physical oscillations. For illustrative purposes we

slightly abused the IFE convention on the right side as in Figure 6.3.

and

Bij =
1

σ2
i − σ2

j

σiΨ̂σi − σjΨ̂σj σjΨ̂σi − σiΨ̂σj

σjΨ̂σi − σiΨ̂σj σiΨ̂σi − σjΨ̂σj

 .
As in [81], care must be taken to robustly treat the possibly small denominators in the com-

ponents of Bij. These expressions for the stress and stress derivatives are used to compute

forces and their linearizations directly from our extended hyperelastic energy densities in all

configurations (inverted or otherwise). As in [86], the one 3× 3 and three 2× 2 matrices can

be readily projected to their nearest SPD counterpart to guarantee that conjugate gradient

can reliably be used for solving the discrete systems that arise with implicit time stepping.
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6.2 Invertible Hyperelastic Energy Densities

We propose the invertible extension of Ψ̂, rather than the extension of its derivatives P̂

as was originally advocated in [40]. That is, these functions are extended to the portion

of singular value space where singular values can be negative. In general, an extension of

P̂ is not guaranteed to be consistent with a hyperelastic strain energy density, and the

procedural modification complicates the definition of stress derivatives needed with implicit

time stepping. In fact, [86] were forced to evaluate stress derivatives in a nearby uninverted

configuration which lead to inconsistency between the stress and its derivatives. We will

show that an energetic extension of the constitutive model is far more simplistic, robust and

stable than the original stress based extension. However, we first discuss some fundamental

properties of hyperelastic energy densities defined over the inverted portion of singular value

space.

6.2.1 Energy Kinks

As previously mentioned, isotropy implies that the energy density Ψ̂ is invariant under

permutations of the singular values. Isotropy is only one source of symmetry in models

defined over inverted configurations.

Standard SVD convention dictates that singular values are always nonnegative. However,

in order for the U and V matrices to correspond to rotations some singular values might

need to be negated. This brings in non-uniqueness in the sense that we are free to choose

which singular values get the negative sign. We resolve this with the IFE convention [40]

and negate, if needed, the one with the smallest magnitude. As a result, the combinations

of singular values that do not obey this convention cannot possibly occur. They form an

invalid region in the principal stretch space, which we show in gray in Figures 6.1, 6.2

and 6.3. Although such combinations will never be computed, we can consider the energy

density as being defined over these excluded combinations by ensuring that combinations

corresponding to the same deformation gradient are assigned the same energy densities. This
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Figure 6.5: Comparison of our C2 Neo-Hookean-based model (bottom) with corotational

elasticity (top) and corotational with our fix (middle). The corotational model is unstable

under these stretched configurations, and many inverted elements arise (shown in red). Our

fix to the corotational model prevents the instability and inversion but does not look as realis-

tic (the cross section resembles an X) as our C2 model. Note that unmodified Neo-Hookean

will produce the same result as our extension, since the extrapolation threshold was not

reached in this example.
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Figure 6.6: We randomly scatter the vertices of an armadillo mesh and let it relax to rest. Our

energy based approach robustly handles extremely large deformations with many severely

deformed and inverted elements (shown in red).

enforces invariance under pairs of singular value sign flips and results in a second form of

symmetry.

The aforementioned symmetries can lead to a kink in the energy density. For example in

2D if we negate the singular values σ1 and σ2, then we must have Ψ̂(σ1, σ2) = Ψ̂(−σ1,−σ2)

since these configurations correspond to the same deformation gradient. Furthermore, if we

then permute these values we must have Ψ̂(σ1, σ2) = Ψ̂(−σ2,−σ1). Consider the energy

along the line σ1(t) = s + t and σ2(t) = −s + t, where s is arbitrary, but fixed. Then,

ψ(t) = Ψ̂(s + t,−s + t) = Ψ̂(s − t,−s − t) = ψ(−t). Then, either ψ′(0) = 0 or ψ(t) has a

kink at t = 0.

Note that ψ′(0) is the component of the stress orthogonal to the line σ1 + σ2 = 0 at

the point (s,−s). Therefore, any energy density that leads to a nonzero orthogonal stress

contribution at the line σ1 + σ2 = 0 must have a kink there. Since the orthogonal stress

component is required to leave this line, a kink in the energy density profile is actually

39



desirable. Otherwise, the model would be inherently compliant to inversion with a weak

restoring force near this line. Note that energy densities defined in terms of the invariants

tend not to produce such a kink. Indeed, consider an energy defined in terms of the invariants

Ψ̂(σ1, σ2) = Ψ̃(I1, J) = Ψ̃(σ2
1 +σ2

2, σ1σ2). The component of the stress orthogonal to the line

σ1 + σ2 = 0 is given as Ψ̂σ1 + Ψ̂σ2 . We can then see from the invariants that Ψ̂σ1 + Ψ̂σ2 =

(2σ1Ψ̃I1 +σ2Ψ̃I2) + (2σ2Ψ̃I1 +σ1Ψ̃I2) = (σ1 +σ2)(2Ψ̃I1 + Ψ̃I2) = 0 when σ1 +σ2 = 0, provided

the partials in the invariants remain bounded. The situation is analogous in 3D with the

kink arising along the plane σ2 + σ3 = 0. See Figures 6.4 and 6.9 (right) for visualizations

of the kinks.

We will show that despite the fact that the kink arises only at the boundary of the valid

region, it still plays a fundamental role in the behavior of the model.

6.2.2 Primary Contour

Hyperelastic constitutive models are characterized by a strongly attractive basin which we

call the primary contour of the model. For example, a model with Poisson’s ratio very close to

1
2

may be more strongly attracted to the submanifold corresponding to volume preservation

than to the rest configuration. Let v be the eigenvector of the energy Hessian Hij = ∂2Ψ̂
∂σi∂σj

with the largest-magnitude eigenvalue, and let gi = ∂Ψ̂
∂σi

be the energy gradient. We define the

primary contour to be the region where v ·g = 0. The Hessian describes how g changes, and

v describes the direction of greatest change of g. Thus, as the configuration moves from the

primary contour, the v component of g will dominate. This tends to draw the configuration

towards the primary contour. When it gets close, the v component diminishes, and the

configuration moves mostly along the contour. This phenomenon is shown in Figures 6.1

and 6.2. Problems arise when the contour crosses over into the inverted regime or when it

approaches a kink in the energy.

Failure to define a model with an appropriate primary contour can lead to catastrophic

behavior, which we demonstrate in the following section.

40



Figure 6.7: Ouch. An armadillo is hit with a ball.

Figure 6.8: Ouch again. An armadillo is passed through gears.
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6.2.3 Corotational Hyperelasticity

Models designed to correct the rotational artifacts inherent in linear elasticity are very pop-

ular in computer graphics [61, 76, 99, 62, 23]. A well-known example is a hyperelastic

corotated model [13, 56], which takes the form

Ψ̂ = µ
∑
i

(σi − 1)2 +
λ

2

(∑
i

(σi − 1)
)2

.

The gradient is gi = 2µ(σi−1)+λ
∑

j(σj−1), and the Hessian is Hij = 2µδij +λ. Its largest

eigenvector is vi = 1 with eigenvalue 2µ+dλ, where d is the dimension. The other eigenvalues

are 2µ with eigenvectors orthogonal to v. Finally, v · g = 0 implies
∑

i(σi − 1) = 0 is the

equation for the primary contour. Note that this primary contour crosses into the inverted

region.

Consider the 2D examples shown in Figure 6.2, which shows material relaxation from

three distinct initial configurations. Note that all three trajectories initially tend towards

the primary contour. Unfortunately, the trajectory highlighted in blue passes through the

inverted region on its way to the primary contour. This behavior is also observed on a

macroscopic scale and under mesh refinement, as shown in Figure 6.1.

The corotated primary contour is also problematic because it intersects the kink in the

energy density in 3D. Consider the behavior of the single tetrahedron shown in Figure 6.3

as it undergoes a stretching deformation. The intersection of the primary contour and the

plane σ1 = c is shown at different stages. Note that the relevant slice of the primary contour

eventually drives the configuration towards the invalid state that violates the sign convention.

This ultimately leads to an energy minimum that lies on a kink, as shown in Figure 6.4. The

discontinuity of the stress at this minimum causes nonphysical oscillations, the problematic

consequences of which are shown on a macroscopic scale in Figure 6.5.
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6.2.4 Corotational Correction

Note that the corotated primary contour is determined primarily by the λ term. Further,

the corrective behavior of the corotated model can largely be attributed to its µ term. This

suggests that a more suitable model can be constructed by replacing the λ term with one

that leads to a more favorable primary contour. One such model is

Ψ̂ = µ
∑
i

(σi − 1)2 +
λ

2
(J − 1)2. (6.1)

Similar λ terms were used in [70, 89]. This model has the primary contour J = 1, which does

not intersect the inverted region. While the model still has limitations, it fixes the stretching

problems of the corotated model (see Figure 6.5).

6.3 Energy Extrapolation

We provide both C1 and C2 extensions to arbitrary isotropic energy densities Ψ̂. We show

that these extensions can produce models with well-behaved primary contours. The C1

extension is easier to implement and results in continuous stresses but discontinuous stress

derivatives. The C2 extension has continuous stress and stress derivatives and provides

added robustness in some scenarios. Our extension to Ψ̂ is accomplished by polynomial

extrapolation from a convex contour in the uninverted portion of singular value space that

increases the energy density as the configuration inverts. We present only the energy densities

below; see Appendix B for derivatives and more details.

6.3.1 C1 Extension

We define the C1 extended energy density Ψ̂ext to coincide with the original Ψ̂ whenever the

singular values are all above a threshold ε. This region is illustrated in blue in the left image of

Figure 6.9 for a 2D problem. If one singular value σi is less than this threshold (region shown

in red), then we extend the energy quadratically in the direction σi from the closest point in

the blue region. Consider the point (σ̄1, σ̄2) in Figure 6.9. In this case, only σ̄1 is below ε,
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σ2

σ1

σ1 + σ2 = 0

(σ̃1, σ̃2)

(σ̄1, σ̄2) (ǫ, σ̄2)

ǫ

ǫ

u

q

r

Σ̂

h

σ2

σ1

σ1σ2 = ǫ

σ1 + σ2 = 0

Figure 6.9: The leftmost images show the relevant regions in the 2D C1 and C2 extensions

respectively. The C1 Ψ̂ext is shown at the right. Note the kink discussed in Section 6.2.1

along the line σ1 + σ2 = 0. The C2 Ψ̂ext looks similar.

and the extension is given as Ψ̂ext (σ̄1, σ̄2) = Ψ̂ (ε, σ̄2) + Ψ̂σ1 (ε, σ̄2) [σ̄1 − ε] + k
2

[σ̄1 − ε]2. This

extension will be C1 as we transition from the blue region to the red region for all values of

the parameter k. This parameter is used to add extra resistance to inversion but does not

degrade the C1 regularity of the extension. For points (σ̃1, σ̃2) with both principal stretches

below the threshold we define another region (shown in green) and quadratically extend

the energy from the nearest point in the red region. It does not matter which red region

we extend from, since in both cases we have Ψ̂ext (σ̃1, σ̃2) = Ψ̂ (ε, ε) + Ψ̂σ1 (ε, ε) [σ̄1 − ε] +

Ψ̂σ2 (ε, ε) [σ̄2 − ε] + Ψ̂σ1σ2 (ε, ε) [σ̄1 − ε] [σ̄2 − ε] + k
2

(
[σ̄1 − ε]2 + [σ̄2 − ε]2

)
. The 3D extension

is analogous but with an additional type of region. Note that we can avoid the SVD if

I1/J
2 ≥ ε (2D) or I2/J

2 ≥ ε (3D), since these imply that σi > ε.

6.3.2 C2 Extension

We use a different extrapolation surface for our C2 model, since the one used in C1 leads to an

unfavorable primary contour when extended to C2. We define the C2 extension whenever the

determinant of the deformation gradient (or product of singular values) is below a threshold

ε. The base energy density Ψ̂ is extended to the extrapolated Ψ̂ext at a given point Σ̂ =

(σ1, σ2, σ3) by extrapolating along the line to the rest configuration point r = (1, 1, 1).
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Extrapolation begins at the intersection of the line and the contour surface σ1σ2σ3 = ε and

is chosen so that all first and second derivatives of the extended energy match those of Ψ̂ at

the intersection point (see Figure 6.9).

Let u = r−Σ̂
|r−Σ̂| be the direction from the point Σ̂ to the rest configuration point r. Denote

the intersection between the line and the threshold surface as q = r+ s
(
Σ̂− r

)
, where the

scalar s is given by the roots of the cubic equation q1q2q3 = ε. If we denote the distance

from Σ̂ to q by h, then the extended energy has the form

Ψ̂ext(Σ̂) = Ψ̂(q) + huiΨ̂σi(q) +
h2

2
uiΨ̂σiσj(q)uj,

where we assume summation on repeated indices. The derivatives of the scalar s needed for

stress and stress derivatives can be determined implicitly by differentiating the cubic equation

q1q2q3 = ε. This Ψ̂ext gives continuous stress and stress derivatives, but it is complicated by

the need for the value and derivatives of the intersection point between the line connecting

Σ̂ to r and the extrapolation contour σ1σ2σ3 = ε.

6.4 Examples

We demonstrate our extension methodology with a Neo-Hookean hyperelastic energy density

Ψ̂ =
µ

2

(∑
i

σ2
i − d

)
− µ ln J +

λ

2
(ln J)2.

In Figures 6.7, 6.12, 6.13 and 6.14 we show examples run with the C1 extension using an

inversion threshold ε = 0.4 and k = 20 × E where E is the Young’s modulus. In general,

smaller values of ε and larger values of k will increase resistance to extreme compression. In

Figures 6.5, 6.6 and 6.8 we show examples run with our C2 extension with threshold surface

J = ε and ε = 0.9. As with C1, smaller values of ε increase resistance to extreme compression.

Although ε = 0.9 is somewhat large, smaller values of ε resulted in unnecessarily stiff response

to compression due to the high energy barrier of the underlying Neo-Hookean constitutive

model.

45



IFE

ν= .3

C2

ν= .3

IFE

ν= .4

C2

ν= .4

Figure 6.10: In these stress test we initially perturb the vertices of a cube mesh to a point

and allow it to recover. Our model resolves itself for a wide range of Lamé coefficients, while

a typical IFE implementation fails to recover for large Poisson’s ratios (ν).
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IFE

ν= .3

C2

ν= .3

IFE

ν= .4

C2

ν= .4

Figure 6.11: In these stress test we randomly perturb the vertices of a cube mesh and allow

it to recover. Our model resolves itself for a wide range of Lamé coefficients, while a typical

IFE implementation fails to recover for large Poisson’s ratios (ν).
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6.4.1 Comparison with IFE

Figures 6.10 and 6.11 show a comparison of our C2 model with IFE using implicit time

integration on two common stress tests. In each case, our model performed significantly

better with the same Lamé parameters. The IFE extension of the first Piola-Kirchoff stress

used the same threshold contour with linear stress extrapolation and derivative clamping

as in [40, 86]. Figure 6.1 (right) shows the primary contour for the 2D equivalent of our

C2 model. Note that the contour never extends into the inverted region. Furthermore the

figure shows that the curve is a good predictor of the average trajectory of an element in

the mesh. Because IFE lacks an energy in the extrapolated region, its primary contour

cannot be used to predict its behavior there. These results suggest that our hyperelastic

extension methodology allows us to readily design constitutive models that are more robust

to extremely large deformation.

6.4.2 Comparison with Corotated

The primary contours for our model and for corotational elasticity are shown in Figure 6.1.

Notice that the corotational elasticity primary contour intersects the inverted region and ours

does not. This feature prevents the tendency towards inverted equilibrium configurations

and it also prevents instabilities that arise when the model drives the configuration towards

the energy kink. Figure 6.5 illustrates the consequences of this behavior in a large scale

example in 3D. The corotated model is driven towards the inverted region and to unstable

minima at the energy kink. This leads to non-physical oscillation and inversion (shown in

red). This behavior is prevented with our fix to the λ term in the corotational mode, however

it still does not look as realistic as our Neo-Hookean-based extension.
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Figure 6.12: Tight spaces. A fish passing through a thin tube.
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Figure 6.13: That’s twisted. 7 elastic links in a braiding example.
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Figure 6.14: Yummy. 25 gelatin cubes falling in a bowl.
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CHAPTER 7

A Material Point Method for Snow Simulation

7.1 Overview

As discussed in the introduction, snow dynamics modeling is difficult due to snow’s variabil-

ity, usually stemming from environmental factors (freshness, water/ice content, etc.). Our

model ignores root causes, and we instead concentrate on deriving an empirical model based

on phenomenological observations. Even so, our snow constitutive model is based on theory

and models devised for engineering applications. The model is kept efficient, allowing us to

capture sufficient geometric detail with tractable computation time.

The material point method is the center of our technique. At its core, MPM relies

on the continuum approximation, avoiding the need to model every snow grain. While an

MPM method typically uses a Cartesian grid to make topology changes and self-collisions

automatic, it outperforms purely Eulerian methods by tracking mass (and other conserved

Figure 7.1: Snowball drop. A basic snowball hitting the ground. c© Disney
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Table 7.1: Comparison between various methods of simulation on four properties that are

important for snow.

Volume

Method Preservation Stiffness Plasticity Fracture

Reeve particles - - - -

Rigid bodies ?? ?? - ?

Mesh-based solids ? ? ? ? ?? ?

Grid-based fluids ? ? ? ? ?? ? ? ?

SPH ? ? ? ? ? ?

MPM ?? ?? ? ? ? ? ? ?

quantities) through non-dissipative Lagrangian particles (like SPH). Unlike SPH, however,

MPM uses the grid as an efficient continuum scratchpad which avoids high valence commu-

nication patterns derived from nearest-neighbor queries. See Figure 7.4 for an illustration of

the interplay between the grid and particles and Section 7.3.1 for details.

Our motivation for choosing MPM is that it is better able to handle the dynamics of

snow. This is analogous to how a rigid body simulation is the most efficient way to handle

infinite stiffness and incompressibility compared to using a large stiffness directly on a FEM

mesh solver. The constitutive properties central to snow are volume preservation, stiffness,

plasticity, fracture, and we summarize various methods’ abilities to handle them in Table 7.1.

Volume preservation in snow is important even though, unlike a liquid, it is compressible.

Instead, snow has varying resistance to volume change, which we model in our method sim-

ilarly to a normal mesh-based solid simulation. Stiffness is also important, and while MPM

cannot do this as well as mesh-based elasticity (the deformation gradient is less accurate), it

is more effective than grid-based elasticity as the deformation gradient is not dissipative and

remains synchronized with positions. Plasticity and fracture are also handled well by MPM,

and this is what makes the method desirable for snow simulation. MPM is almost ideal
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Figure 7.2: SIGGRAPH. The MPM method naturally handles fracture, giving us interest-

ing naturalistic shapes. c© Disney

for plasticity because the inaccuracies of the deformation gradient accumulate as artificial

plasticity. While grid-based fluids work well for plasticity [28], MPM is better at conserving

angular momentum. While mesh-based FEM methods can handle plasticity [5], remeshing

is required with extreme deformation. By contrast, MPM need only track the unmeshed

particles. We note MPM’s gains in plasticity and fracture come at the cost of reduced elastic

accuracy, a good tradeoff for snow.

7.2 Related work

Geometric snow modeling The bulk of graphics snow research is devoted to modeling

accumulation [27, 25, 26, 65]. These techniques can efficiently and accurately create snow-

covering effects but neglect treatment of snow dynamics. Some authors have extended these

techniques to handle rapid animation and interactions with external objects [72, 97, 12, 55,

34]. Often these methods use simplified modeling primitives like height-fields (e.g. [85]),

54



Figure 7.3: Castle destruction. Modeled structures like this castle can be destroyed using

our method. c© Disney

and these are now a popular techniques for games and feature films. Additionally, [46, 44]

simulate the related phenomena of ice and frost formation.

Granular materials Snow is often classified as a granular material. Although we are

not aware of any graphics paper that specifically simulates snow dynamics, many papers have

considered other uses of granular dynamics such as sand. The first graphics papers approxi-

mating granular materials consisted of particle or simplified rigid body systems representing

each grain [59, 53, 58], and recently researchers have continued to improve such techniques

[6, 2]. Even so, the challenge is to retain efficiency as the number of grains increases. Other

researchers have successfully applied simplified continuum models [98, 50, 63, 1, 39] to good

effect. In particular, [98] introduced a FLIP-based method for simulating sand as an incom-

pressible fluid. Subsequently, [63] modified the incompressibility constraint to avoid cohesion

errors. Similarly, the MPM method was designed to extend FLIP to solid mechanics prob-

lems that require compressibility.

Elasto-plastic continuum modeling The computer graphics work on elasto-plastic

simulation is relevant because of our constitutive model [87, 66, 71, 40, 5, 13, 42, 96, 51, 28].

The Eulerian discretization of elasticity in [51] is particularly relevant as the material point

method uses a regular Eulerian grid for discretizing stress-based forces.

Engineering modeling of snow There is extensive engineering literature related to

55



the modeling and simulation of snow [30]. Although the complex mechanical behavior of

snow strongly depends on numerous physical conditions, we found that an elasto-plastic

constitutive relation worked well for generating realistic dynamics for a wide range of vi-

sual phenomena. This representation, as well as finite-element-based discretization, is very

common in the engineering literature [57, 17, 82, 21, 16, 9, 64].

7.3 Material point method

A body’s deformation can be described as a mapping from its undeformed configuration

X to its deformed configuration x by x = φ(X), which yields the deformation gradient

F = ∂φ/∂X. Deformation φ(X) changes according to conservation of mass, conservation

of momentum and the elasto-plastic constitutive relation

Dρ

Dt
= 0, ρ

Dv

Dt
= ∇x · σ + ρg, σ =

1

J

∂Ψ

∂FE
F T
E ,

where ρ is density, t is time, v is velocity, σ is the Cauchy stress, g is the gravity, Ψ is the

elasto-plastic potential energy density, FE is the elastic part of the deformation gradient F

and J = det(F ). We will discuss details of the constitutive model in Section 7.4.

The basic idea behind the material point method is to use particles (material points)

to track mass, momentum and deformation gradient. Specifically, particle p holds position

xp, velocity vp, mass mp, and deformation gradient Fp. The Lagrangian treatment of these

quantities simplifies the discretization of the Dρ
Dt

and ρDv
Dt

terms. However, the lack of mesh

connectivity between particles complicates the computation of derivatives needed for stress-

based force evaluation. This is remedied with the use of a regular background Eulerian

grid. Interpolating functions over this grid are used to discretize the ∇x · σ terms in the

standard FEM manner using the weak form. We use dyadic products of one-dimensional

cubic B-splines as our grid basis functions as in [83]

Nh
i (xp) = N(

1

h
(xp − ih))N(

1

h
(yp − jh))N(

1

h
(zp − kh)),

where i = (i, j, k) is the grid index, xp = (xp, yp, zp) is the evaluation position, h is the grid
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Figure 7.4: An overview of the material point method (MPM). The top and the bottom rows

are steps that operate on particles while the middle depicts grid-based operations.
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spacing and

N(x) =


1
2
|x|3 − x2 + 2

3
, 0 ≤ |x| < 1

−1
6
|x|3 + x2 − 2|x|+ 4

3
, 1 ≤ |x| < 2

0, otherwise

.

For more compact notation, we will use wip = Nh
i (xp) and ∇wip = ∇Nh

i (xp). These

interpolation functions naturally compute forces at the nodes of the Eulerian grid. Therefore,

we must first transfer the mass and momentum from the particles to the grid so that we can

update the velocities at the grid nodes. This updated velocity is then transferred back to

the particles in either a FLIP or PIC type manner. The transfer process is done using the

interpolating weights wip.

7.3.1 Full method

Here we outline the full update procedure (visually shown in Figure 7.4).

1. Rasterize particle data to the grid. The first step is to transfer mass from particles

to the grid. The mass is transferred using the weighting functions mn
i =

∑
pmpw

n
ip. Ve-

locity also should be interpolated to the grid, but weighting with wnip does not result in

interpolation. Instead, we use normalized weights for velocity vni =
∑

p v
n
pmpw

n
ip/m

n
i .

Note that this conserves the total momentum of the system.

2. Compute particle volumes and densities. First timestep only. Our force dis-

cretization requires a notion of a particle’s volume in the initial configuration. We

can estimate a cell’s density as m0
i/h

3, which we can weight back to the particle as

ρ0
p =

∑
im

0
iw

0
ip/h

3. We can now estimate a particle’s volume as V 0
p = mp/ρ

0
p.

3. Compute grid forces using equation (7.6) with x̂i = xi.

4. Update velocities on grid to v?i using equation (7.10).

5. Grid-based body collisions on v?i as described in Section 7.7.
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6. Solve the linear system in equation (7.9) for implicit integration. For explicit time

integration, simply let vn+1
i = v?i .

7. Update deformation gradient. The deformation gradient for each particle is up-

dated as F n+1
p = (I+∆t∇vn+1

p )F n
p , where we have computed∇vn+1

p =
∑
i v

n+1
i (∇wnip)T .

Section 7.6 gives a detailed description of the update rule for elastic and plastic parts

of F .

8. Update particle velocities. Our new particle velocities are vn+1
p = (1−α)(vP )n+1

p +

α(vF )n+1
p , where the PIC part is (vP )n+1

p =
∑
i v

n+1
i wnip and the FLIP part is (vF )n+1

p =

vnp +
∑
i(v

n+1
i − vni )wnip. We typically used α = 0.95.

9. Particle-based body collisions on vn+1
p as detailed in Section 7.7.

10. Update particle positions using xn+1
p = xnp + ∆tvn+1

p .

7.4 Constitutive model

Snow material behavior is complicated by the fact that it contains a combination of water

and ice which strongly affects its behavior. One might be tempted to think that snow behaves

like sand. However, one major difference is that snow is typically compressible while sand is

not. In addition, its behavior changes dramatically with a number of environmental factors

including temperature, humidity, density and snow age, making snow constitutive modeling a

challenging and open research problem. We refer the reader to [64] for a thorough discussion

of the many approaches in the engineering literature and [30] as a general snow reference.

We found the methodology employed in [57] to be most relevant to computer graphics

because it is concerned with the large strains typical of visually compelling scenes. In

this work, the authors use a specially designed finite-strain multiplicative plasticity law

employing the Drucker-Prager plasticity model [20]. They couple this with a hyperelastic

dependence of the Kirchoff stress on the elastic part of the multiplicative decomposition of the

deformation gradient. While this model is designed to match the stress-strain relation of snow
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under a number of realistic conditions, we found that a more simplified treatment of finite-

strain multiplicative plasticity coupled with a common graphics model for hyperelasticity

was sufficient for visual realism. The most salient features of our approach are the use

of principal stretches rather than principal stresses in defining our plastic yield criteria as

well as a simplification of hardening behavior that only requires modification of the Lamé

parameters in the hyperelastic energy density. While principal-stress-based plasticity is more

appropriate for physical accuracy, principal-stretch-based yield gives the user more control

over the visual behavior of the simulation.

In multiplicative plasticity theory it is customary to separate F into an elastic part FE

and a plastic part FP so that F = FEFP . We define our constitutive model in terms of the

elasto-plastic energy density function

Ψ(FE,FP ) = µ(FP )‖FE −RE‖2
F +

λ(FP )

2
(JE − 1)2, (7.1)

with the elastic part given by the fixed corotated energy density (6.1) and the Lamé param-

eters being functions of the plastic deformation gradients

µ(FP ) = µ0e
ξ(1−JP ) and λ(FP ) = λ0e

ξ(1−JP ), (7.2)

where JE = detFE, JP = detFP , FE = RESE by the polar decomposition, λ0, µ0 are the

initial Lamé coefficients and ξ is a dimensionless plastic hardening parameter. Additionally

we define the portion of deformation that is elastic and plastic using the singular values of

the deformation gradient. We define a critical compression θc and stretch θs as the thresholds

to start plastic deformation (or fracture). Namely, the singular values of FE are restricted

to the interval [1− θc, 1 + θs].

Our material is elastic in the regime of small deformations as dictated by the FE de-

pendence in (7.1). When the deformation exceeds a critical threshold (either stretch or

compress) it starts deforming plastically as described in more detail in Section 7.6. This

also affects the material properties in accordance with (7.2), making it stronger under com-

pression (packing) and weaker under stretch (fracture), allowing us to achieve realistic snow

phenomena.

60



Table 7.2: In our model we found these parameters to be a useful starting point for producing

simulations.

Parameter Notation Value

Critical compression θc 2.5× 10−2

Critical stretch θs 7.5× 10−3

Hardening coefficient ξ 10

Initial density (kg/m3) ρ0 4.0× 102

Initial Young’s modulus (Pa) E0 1.4× 105

Poisson’s ratio ν 0.2

Figure 7.5: A snow block breaks over a wedge. We use the top-center image as a reference

and show how changing different parameters in our model affects the look and dynamics of

the material. c© Disney
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To simulate different types of snow, we found the following intuition useful. θc and θs

determine when the material starts breaking (larger = chunky, smaller = powdery). The

hardening coefficient determines how fast the material breaks once it is plastic (larger =

brittle, smaller = ductile). Dry and powdery snow has smaller critical compression and

stretch constants, while the opposite is true for wet and chunky snow. Icy snow has a higher

hardening coefficient and Young’s modulus, with the opposite producing muddy snow. See

Figure 7.5 for examples of snow variation and Table 7.2 for a list of generic parameters.

7.5 Stress-based forces and linearization

The total elastic potential energy can be expressed in terms of the energy density Ψ as∫
Ω0

Ψ(FE(X),FP (X))dX, (7.3)

where Ω0 is the undeformed configuration of the material. The MPM spatial discretization

of the stress-based forces is equivalent to differentiation of a discrete approximation of this

energy with respect to the Eulerian grid node material positions. However, we do not actually

deform the Eulerian grid so we can think of the change in the grid node locations as being

determined by the grid node velocities. That is, if xi is the position of grid node i, then

x̂i = xi+∆tvi would be the deformed location of that grid node given the current velocity vi

of the node. If we refer to the vector of all grid nodes x̂i as x̂, then the MPM approximation

to the total elastic potential can be written as

Φ(x̂) =
∑
p

V 0
p Ψ(F̂Ep(x̂),F n

Pp),

where V 0
p is the volume of material originally occupied by particle p, F n

Pp is the plastic part

of F at particle p at time tn and F̂Ep is the elastic part which is related to x̂ as in [84] as

F̂Ep(x̂) =

(
I +

∑
i

(x̂i − xi)(∇wnip)T
)
F n
Ep. (7.4)

With this convention, the MPM spatial discretization of the stress-based forces is given as

− fi(x̂) =
∂Φ

∂x̂i
(x̂) =

∑
p

V 0
p

∂Ψ

∂FE
(F̂Ep(x̂),F n

Pp)(F
n
Ep)

T∇wnip. (7.5)
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Figure 7.6: Snowplow. The characteristic cylindrical tube spray is created by the snowplow.

c© Disney

That is, fi(x̂) is the force on grid node i resulting from elastic stresses. This is often written

in terms of the Cauchy stress σp = 1
Jnp

∂Ψ
∂FE

(F̂Ep(x̂),F n
Pp)(F

n
Ep)

T as

fi(x̂) = −
∑
p

V n
p σp∇wnip, (7.6)

where V n
p = Jnp V

0
p is the volume of the material occupied by particle p at time tn.

We highlight this relation of the MPM spatial discretization to the elastic potential

because we would like to evolve our grid velocities vi implicitly in time. With this convention,

we can take an implicit step on the elastic part of the update by utilizing the Hessian of the

potential with respect to x̂. The action of this Hessian on an arbitrary increment δu can be
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expressed as

− δfi =
∑
j

∂2Φ

∂x̂i∂x̂j
(x̂)δuj =

∑
p

V 0
p Ap(F

n
Ep)

T∇wnip, (7.7)

where

Ap =
∂2Ψ

∂FE∂FE
(FE(x̂),F n

Pp) :

(∑
j

δuj(∇wnjp)TF n
Ep

)
(7.8)

and the notation A = C : D is taken to mean Aij = CijklDkl with summation implied on

indices kl. See Appendix B for details of the differentiation.

7.5.1 Implicit update

We think of the elasto-plastic response as defined from the material positions of the Eulerian

grid nodes x̂i = xi + ∆tvi. However, as noted in the previous section, we never deform this

grid. Therefore, we can think of x̂ = x̂(v) as defined by v. With this in mind, we use the

following notation fni = fi(x̂(0)), fn+1
i = fi(x̂(vn+1)) and ∂2Φn

∂x̂i∂x̂j
= −∂fni

∂x̂j
= − ∂fi

∂x̂j
(x̂(0)).

Using these derivatives, we form our implicit update using vn+1
i = vni + ∆tm−1

i ((1 −

β)fni + βfn+1
i ) ≈ vni + ∆tm−1

i (fni + β∆t
∑
j

∂fni
∂x̂j
vn+1
j ). This leads to a (mass) symmetric

system to solve for vn+1
i ∑

j

(
Iδij + β∆t2m−1

i

∂2Φn

∂x̂i∂x̂j

)
vn+1
j = v?i , (7.9)

where the right hand side is

v?i = vni + ∆tm−1
i f

n
i (7.10)

and β chooses between explicit (β = 0), trapezoidal (β = 1
2
), and backward Euler (β = 1).

7.6 Deformation gradient update

We start of by temporarily defining F̂ n+1
Ep = (I + ∆t∇vn+1

p )F n
Ep as in (7.4) and F̂ n+1

Pp = F n
Pp,

so that initially all the changes get attributed to the elastic part of the deformation gradient

F n+1
p = (I + ∆t∇vn+1

p )F n
EpF

n
Pp = F̂ n+1

Ep F̂
n+1
Pp . (7.11)

64



The next step is to take the part of F̂ n+1
Ep that exceeds the critical deformation threshold

and push it into F̂ n+1
Pp . We compute the singular value decomposition F̂ n+1

Ep = UpΣ̄pV
T
p and

then clamp the singular values to the permitted range Σp = clamp
(
Σ̄p, [1− θc, 1 + θs]

)
. The

final elastic and plastic components of the deformation gradient are computed as

F n+1
Ep = UpΣpV

T
p and F n+1

Pp = VpΣ
−1
p U

T
p F

n+1
p . (7.12)

It can be easily verified that F n+1
p = F n+1

Ep F
n+1
Pp .

7.7 Body Collisions

We process collisions against collision bodies twice each time step. The first time is on

the grid velocity v?i immediately after forces are applied to grid velocities. In the case of

implicit integration, this contributes to the right hand side of the linear system and degrees

of freedom corresponding to the colliding grid nodes are projected out during the solve.

We apply collisions once more to particle velocities vn+1
p just before updating positions to

account for the minor discrepancies between particle and grid velocities due to interpolation.

In each case, collision processing is performed the same way. All of our collisions are inelastic.

Collision objects are represented as level sets, which makes collision detection (φ ≤ 0)

trivial. In case of a collision the local normal n = ∇φ and object velocity vco are computed.

First, the particle/grid velocity v is transformed into the reference frame of the collision

object, vrel = v − vco. If the bodies are separating (vn = vrel · n ≥ 0), then no collision

is applied. Let vt = vrel − nvn be the tangential portion of the relative velocity. If a

sticking impulse is required (‖vt‖ ≤ −µvn), then we simply let v′rel = 0, where the prime

indicates that the collision has been applied. Otherwise, we apply dynamic friction, and

v′rel = vt + µvnvt/‖vt‖, where µ is the coefficient of friction. Finally, we transform the

collided relative velocity back into world coordinates with v′ = v′rel + vco.

We used two types of collision objects: rigid and deforming. In the rigid case, we store

a stationary level set and a potentially time-varying rigid transform, which we can use to
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Figure 7.7: Snowball smash. A snowball smashes against a wall with sticky (bottom) and

non-sticky (top) collisions. c© Disney

Figure 7.8: Double smash. Two snowballs collide and shatter. c© Disney
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compute φ, n, and vco at any point. In the deforming case, we load level set key frames and

interpolate them similarly to [77] using φ(x, t + γ∆t) = (1 − γ)φ(x − γ∆tvco, t) + γφ(x +

(1− γ)∆tvco, t+ ∆t), except we compute the velocity as vco = (1− γ)v(x, t) + γv(x, t+ ∆t)

instead of the average velocity.

Finally, we utilize a sort of sticky collision in situations where we want snow to stick to

vertical or under-hanging surfaces. In this case, Coulomb friction is insufficient since the

normal relative velocity would be zero (vertical) or positive (under-hanging and separating

due to gravity). We achieve this effect by setting v′rel = 0 unconditionally for collisions

against these surfaces.

7.8 Rendering

Researchers have measured scattering properties by applying scattering and radiative trans-

port theory (see [94]), and this has been popular in graphics as well (see [65]). Our discrete

Cartesian grid measures density relative to the material points, giving us a way of showing

visual variation between loose and tightly packed snow. This gives us a rendering advantage

over a surface or a purely point-based method.

At render time, we rasterize the final simulated material points to the simulation grid. In

practice one could use different filter kernels for antialiasing (and even a different grid) but

we use those from Section 7.3 for simplicity. We employ a volumetric path tracer to solve

the volume scattering equation using a Henyey-Greenstein phase function that approximates

the Mie scattering theory of ice crystals. We typically use a mean-cosine of g = 0.5 to obtain

forward scattering, an extinction coefficient σt = 724m−1 and scattering albedo σs/σt =

[0.9, 0.95, 1.0] where σs is the scattering coefficient.
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Figure 7.9: Rolling snowball. As the snowball moves down the hill, compressed snow

sticks, demonstrating that we can handle so-called packing snow effect. c© Disney
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7.9 Results

We have simulated a variety of examples that demonstrate the power of our method. Our

constitutive model’s combination of compressibility, plasticity and hardening automatically

handles fracture and packing snow’s characteristic sticky effect. In particular, we show a

variety of snowball simulations illustrating fracture in Figures 7.7, 7.8 and 7.1. We can also

handle sculpted initial snow shapes fracturing as seen in Figures 7.2, 7.3 and 7.10. Snow’s

sticky effect is produced when originally disparate pieces of snow are compressed together

which we demonstrate with a growing snowball clobbering a snowman in Figure 7.9.

We also demonstrate the characteristic tumbling motion of snow being plowed in Fig-

ure 7.6. The simulation was performed on a translating grid to save computation.

Table 7.3 lists the simulation times and resolutions for each of the examples. For all of

our examples we randomly seeded particles into the volumes we needed to fill in with snow

and gave them the same initial parameters. We found that using 4 − 10 particles per grid

cell (for initially packed snow) produced plausible results. In addition, we found that we

did not need to perform any reseeding of particles, and we also optimized grid operations to

occur only on nodes where particles’ interpolation radii overlapped. Thus our computation

remained proportional to the number of particles and equivalently the number of occupied

grid cells.

In some cases we used spatially varying constitutive parameters defined per particle to

get more realistic results. For instance, the snowballs were made harder and heavier on the

outside with stiffness varied with a noise pattern to get chunky fracture. This mimics our

experiments with snowballs in the real world.

Though simple, the explicit update scheme requires very restrictive time steps for sta-

bility; it would often require ∆t ' 10−5 to get plausible simulation behavior. By contrast,

our semi-implicit method is less restrictive, allowing ∆t ' 0.5× 10−3 for all of the examples

presented in this paper. The semi-implicit update step yields a (mass) symmetric system

(7.9) which we solved using the conjugate residual method. In practice we found only 10-30
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Table 7.3: Example particle counts, resolutions and simulation times. Simulations were

performed on an 8-core Intel Xeon X5550 2.67GHz machine.

Example Particles Grid min/frame

Snowball drop 3.0× 105 600× 300× 600 5.2

Snowball smash 3.0× 105 200× 240× 600 7.3

Double smash 6.0× 105 800× 300× 800 13.3

Snowplow 3.9× 106 150× 50× 300 2.1

Rolling snowball 7.2× 106 200× 240× 470 35.7

SIGGRAPH 7.5× 105 780× 120× 220 4.7

The end 5.8× 105 700× 120× 210 3.8

Castle destruction 1.6× 106 360× 160× 560 6.0

iterations were necessary with no preconditioning independent of grid resolution or number

of particles.
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Figure 7.10: The end. We can simulate other words, too. c© Disney
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CHAPTER 8

Conclusion

We demonstrated a number of practical techniques and examples of designing elasto-plastic

constitutive models for deformable solids. We targeted issues relevant primarily to graphics

applications, which include robustness to extreme deformations, ability to cover a wide range

of physical phenomena and providing user with intuitive controls over the material’s resulting

behavior.

In particular, we developed a method for extending arbitrary isotropic hyperelastic con-

stitutive models to inverted configurations. Our energy based approach gives continuous

stress, unambiguous stress derivatives and is significantly more robust to inversion and large

deformations than traditional IFE [40, 86]. In addition, we introduced a novel concept of a

constitutive model’s primary contour. We showed how this concept can be efficiently used to

predict model’s stability and we also showed how to use the primary contour methodology

to improve the robustness of a popular corotated model [13, 56] to large deformations.

Further, we presented a novel snow constitutive model designed for intuitive user control

of practical snow behavior. This was also designed to achieve our goal of describing the

many phases of snow behavior with one constitutive relation. We borrowed from the vast

engineering literature on snow and demonstrated that an elasto-plastic treatment is an ef-

fective means of handling the transition between many different behaviors including flowing,

clumping, breaking and more. Finally, we developed a semi-implicit Material Point Method

(MPM) [84] to efficiently treat the wide range of material stiffnesses, collisions and topolog-

ical changes arising in complex snow scenes. It presents and interesting new technique for

continuum mechanics that will likely inspire additional research in graphics.
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APPENDIX A

Solid Mechanics Reference

This chapter covers notations and main concepts from continuum mechanics, focusing pri-

marily on the mechanics of solids. We follow closely [8, 29] in our developments, and refer

the reader to those manuscripts for more details.

A.1 Kinematics

A.1.1 Notations

The deformation of a body from initial or reference configuration Ω0 to current configuration

Ωt at time t is described by a function φ : Ω0 → Ωt, which maps each point X ∈ Ω0 to a

point x(t) ∈ Ωt (see Figure A.1)

x(t) = φ(X, t) (A.1)

dL
X

dV

Bε0

ρ0

dl
x

dv
Bεt

ρ

φ

initial

Ω0

current

Ωt

Figure A.1: Illustration of deformation. Ω0 denotes the reference configuration and Ωt

denotes the deformed configuration at time t. The dot in Ω0 and Ωt represents one and the

same material particle.
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The velocity and acceleration of a particle X at time t, located at x = φ(X, t), are given

respectively by

V (X, t) =
∂φ(X, t)

∂t
, (A.2)

A(X, t) =
∂2φ(X, t)

∂t2
. (A.3)

This representation is often referred to as material space description, since everything is

written in terms of material coordinates X. In addition, one can consider world space

description of the same quantities: v(x, t) and a(x, t). The relationship between the two is

given by

V (X, t) = v(φ(X, t), t), (A.4)

A(X, t) = a(φ(X, t), t). (A.5)

A.1.2 Deformation Gradient

A natural way to quantify strain is through the deformation gradient , which is defined by

F (X, t) = ∇Xφ(X, t), (A.6)

or in index notations

Fij =
∂xi
∂Xj

. (A.7)

Similarly, one can introduce the deformation gradient of the inverse transform

F−1
ij =

∂Xj

∂xi
. (A.8)

The field F provides information on the local behavior of a deformation φ. If we consider

an infinitesimal neighborhood Bε
0(X) and its image Bε

t (x), then we have

dl = F dL, (A.9)

for any vector dL within the neighborhood and its image dl (see Figure A.1). The Jacobian

field

J(X, t) = detF (X, t) (A.10)
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characterizes the local volume change

dv = JdV, (A.11)

where dV = volume(Bε
0), dv = volume(Bε

t ). We also note here that the time derivative of

the deformation gradient can be written as

Ḟ =
∂

∂t
∇Xφ(X, t) = ∇X ∂φ(X, t)

∂t
= ∇Xv (A.12)

A.1.3 Surface Normals Transformation

Consider an infinitesimal surface element of area dA and its normal N in the reference

configuration, and let its image in the current configuration have area da and normal n.

The goal is to determine the relationship between NdA and nda. Let dV be the volume of a

cylinder built with the surface element in the reference configuration and some infinitesimal

vector dL, and let dv be the volume of a cylinder built with the surface element in the

current configuration and vector dl, which is the image of dL. Then

dV = dL ·NdA, (A.13)

dv = dl · nda. (A.14)

Also from (A.9) and (A.11) we have

dl = F dL, (A.15)

dv = JdV. (A.16)

Substituting (A.13) and (A.14) into (A.16) and using (A.15) gives

F dL · nda = JdL ·NdA ⇐⇒ dL · F Tnda = dL · JNdA (A.17)

Since dL was chosen arbitrarily, we get

nda = JF−TNdA, (A.18)

or in index notation

nida = JF−1
ji NjdA. (A.19)
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A.2 Dynamics

A.2.1 Conservation of Mass

Let ρ0(X) and ρ(x, t) be the densities in the reference and current configurations respectively

(see Figure A.1). Note that at t = 0 we have x = X and hence ρ ≡ ρ0.

A.2.1.1 Lagrangian Formulation

For any B0 ⊂ Ω0 and its image Bt = φ(B0) ⊂ Ωt (not necessarily small) we have∫
B0

ρ0(X)dX =

∫
Bt

ρ(x, t)dx, (A.20)

which is dictated by the conservation of mass. Applying the change of variables to the second

integral gives ∫
Bt

ρ(x, t)dx =

∫
B0

R(X, t)J(X, t)dX, (A.21)

where R(X, t) is the material description of ρ(x, t)

R(X, t) = ρ(φ(X, t), t). (A.22)

Since (A.20) and (A.21) hold for any B0 ⊂ Ω0 we have

R(X, 0) = JR(X, t). (A.23)

A.2.1.2 Eulerian Formulation

Equality (A.20) can be equivalently written as

∂

∂t

∫
Bt

ρ(x, t)dx = 0. (A.24)

Differentiating the integral and applying divergence theorem gives

∂

∂t

∫
Bt

ρ(x, t)dx =

∫
Bt

∂ρ

∂t
dx+

∫
∂Bt

ρv · nda =

∫
Bt

(∂ρ
∂t

+∇ · (ρv)
)
dx, (A.25)
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Since Bt ⊂ Ωt is arbitrary, combining (A.24) and (A.25) gives

∂ρ

∂t
+∇ · (ρv) = 0. (A.26)

Note: It can also be shown that (A.23) and (A.26) are equivalent by directly performing

the change of variables (A.1) and using the chain rule.

A.2.2 Cauchy Stress Tensor

Let point x and a unit vector n be given. Consider an element of area ∆a with normal n

and containing x. Let the resultant force on this area from the part of the material that has

n as the outer normal be ∆q. Then the traction vector field is defined as

t(x,n) = lim
∆a→0

∆q

∆a
. (A.27)

By the 3rd Newton’s Law we must have

t(x,−n) = −t(x,n). (A.28)

It can be shown, given the existence of volumetric force density, that t is linear in n, so there

exists a second order tensor σ(x) such that for any n

t(x,n) = σ(x)n. (A.29)

It also can be shown, from the conservation of the angular momentum, that σ(x) is a

symmetric tensor.

A.2.3 Balance of Linear Momentum

Let B0 ⊂ Ω0 and Bt = φ(B0) ⊂ Ωt. Then the integral form of balance of linear momentum

can be written as

d

dt

∫
Bt

ρ(x, t)v(x, t)dx =

∫
∂Bt

σ(x, t)nda+

∫
Bt

ρ(x, t)b(x, t)dx, (A.30)

where b(x, t) is external force per unit mass.
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A.2.3.1 Eulerian Formulation

Lemma A.2.1. Let Φ(x, t) be any spatial scalar, vector or tensor field. Then

d

dt

∫
Bt

Φ(x, t)ρ(x, t)dx =

∫
Bt

Φ̇(x, t)ρ(x, t)dx (A.31)

Proof. Switching to material coordinates and using conservation of mass equations (A.22)

and (A.23) we get

d

dt

∫
Bt

Φ(x, t)ρ(x, t)dx =
d

dt

∫
B0

Φ(φ(X, t), t)ρ(φ(X, t), t)JdX =

=
d

dt

∫
B0

Φ(φ(X, t), t)R(X, 0)dX =

=

∫
B0

Φ̇(φ(X, t), t)R(X, 0)dX =

=

∫
Bt

Φ̇(x, t)ρ(x, t)dx.

Applying Lemma A.2.1 and divergence theorem to (A.30) gives∫
Bt

ρ(x, t)a(x, t)dx =

∫
Bt

∇x · σ(x, t)dx+

∫
Bt

ρ(x, t)b(x, t)dx.

And since Bt ⊂ Ωt is arbitrary we have

ρa = ∇x · σ + ρb. (A.32)

A.2.3.2 Lagrangian Formulation

Performing change of variables on the left-hand-side of (A.30) gives

d

dt

∫
Bt

ρ(x, t)v(x, t)dx =
d

dt

∫
B0

ρ0(X)V (X, t)dX =

∫
B0

ρ0(X)A(X, t)dX.

Similarly for the external force on the right-hand-side∫
Bt

ρ(x, t)b(x, t)dx =

∫
B0

ρ0(X)B(X, t)dX.
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where we introduced B(X, t) = b(φ(X, t), t). For the surface integral we use (A.18) and

divergence theorem to obtain∫
∂Bt

σnda =

∫
∂B0

σJF−TNdA =

∫
B0

∇XP dX,

where we introduced the 1st Piola Kirchoff stress tensor

P = σJF−T , (A.33)

or in index notations

Pij = σikJF
−1
jk . (A.34)

Combining all of the above results and recalling that B0 is arbitrary we get

ρ0A = ∇X · P + ρB. (A.35)

or in index notations

ρ0Ai = Pij,j + ρBi. (A.36)

A.2.4 Eulerian vs Lagrangian Representations

The graph on Figure A.2 shows the relationship between different quantities in the initial

and current configurations. The only quantity that has not been introduced yet is 2nd Piola

Kirchoff stress tensor

S = JF−1σF−T . (A.37)

Given an element of area NdA in the reference configuration it gives the force

dQ = SNdA.

This is the material force in the sense that if multiplied by the deformation gradient we get

the actual force on the image nda of NdA

dq = F dQ.

The same quantity can be computed using 1st Piola Kirchoff or Cauchy stress tensors as

dq = PNdA = σnda.
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X NdA dQ

x nda dq

initial

current

location normals forces

F JF−T
P

FJF−T

S

σ

Figure A.2: The graph shows the relationship between different quantities in the initial and

current configurations.

A.3 Virtual Work Principle

It is customary, especially in the finite element applications, to consider a weak formulation

of the differential equation in question. In the context of solid mechanics this leads to the

virtual work equation which is a weak form of the balance of linear momentum. Let δν be an

arbitrary velocity field associated with the current configuration of the body. Then (A.32)

implies

ρa · δν = (∇x · σ + ρb) · δν, (A.38)

which is the local virtual work equation. Integrating over Ωt and applying the divergence

theorem yields∫
Ωt

ρa · δνdx =

∫
∂Ωt

t · δνda−
∫

Ωt

σ : ∇xδνdx+

∫
Ωt

ρb · δνdx, (A.39)

which is the global virtual work equation. In case of δν = v the left hand side is the rate of

change of the total kinetic energy of the system (recall Lemma A.2.1), while the right hand

side is the total power of the forces acting on the system: both internal and external. Thus,

(A.39) can be viewed as a generalization of the energy conservation law. We will now focus
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on the internal elastic term

δWE =

∫
Ωt

σ : ∇xδνdx, (A.40)

and derive a material space description for it. We first note that the deformation gradient

change rate due to the virtual displacement δν is given by

δḞ = ∇Xδν = ∇xδνF

where we used relationship (A.12). Hence

δWE =

∫
Ωt

σ : ∇xδνdx =

∫
Ω0

Jσ : (Ḟ F−1)dx =

∫
Ω0

tr(JσḞF−1)dx

=

∫
Ω0

tr(JF−1σḞ )dx =

∫
Ω0

(JσF−T ) : Ḟ dx =

∫
Ω0

P : Ḟ dx

A.4 Constitutive Modeling and Hyperelasticity

The dynamics equations derived in the previous sections were written using only stresses

inside the body. Those stresses result from material deformation and hence it is necessary to

specify a relationship between the two. This relationship, also known as a constitutive model ,

is typically determined by the physical properties of the material. Materials for which the

constitutive behavior is only a function of the current state are known as elastic, and can be

fully characterized by specifying the dependency P = P (F ,X). In the special case when

the work done by the stresses is dependent only on the initial and current configurations of

body, the material is called hyperelastic and one can define its elastic energy density as

Ψ(F (X),X) =

∫ t

0

P (F (X),X) : Ḟ dt (A.41)

This elastic energy density Ψ(F ,X) is often used to define a hyperelastic material. We note

that (A.41) implies

P (F ,X) =
∂Ψ(F ,X)

∂F
(A.42)
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APPENDIX B

Energy and Stress Derivatives

B.1 Isotropic Stress Derivatives in Terms of Singular Values

When specifying a constitutive model energy density Ψ in terms of singular values σi, it

is convenient to compute the first Piola-Kirchoff stress tensor P = ∂Ψ
∂F

and its deriva-

tives M = ∂P
∂F

directly in terms of ∂Ψ
∂σi

and ∂2Ψ
∂σi∂σj

. To do this we parametrized F in

terms of the singular values using the singular value decomposition F = UΣV T . Let

K = {σ1, σ2, σ3, u1, u2, u3, v1, v2, v3} be the degrees of freedom parametrization U , Σ, and V .

We parametrize the rotations using Rodrigues’ rotation formula, though any parametrization

that is well-behaved around the identity would suffice. Let Ciα = ∂Fi
∂Kα

, where Latin charac-

ters (i, j) are used to represent the degrees of freedom of F (flattened into a 9-vector) and

Greek letters (α, β, γ) are used to represent the degrees of freedom parametrizing the singu-

lar value decomposition. Then, Ciα is the Jacobian matrix (in terms of K) for the change of

variables. Let Dαj be the inverse of the Jacobian (also in terms of K), so that CiαDαj = δij.

Let Ψ be the energy in terms of the degrees of freedom of F and Ψ̂ be the energy in terms

of the degrees of freedom K. Using commas to indicate partial differentiation,

Ψ,iCi,α = Ψ̂,α

(Ψ,iCi,α),β = Ψ̂,αβ

Ψ,ijCi,αCj,β + Ψ,iCi,αβ = Ψ̂,αβ

Ci,αDαj = δij
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Ψ,i = Ψ̂,αDαi

Ψ,ijCi,αDαkCj,β = Ψ̂,αβDαk −Ψ,iCi,αβDαk

Ψ,kjCj,β = Ψ̂,αβDαk −Ψ,iCi,αβDαk

Ψ,ij = Ψ̂,αβDαiDβj − Ψ̂,γDγkCk,αβDαiDβj

The Piola-Kirchoff stress tensor Ψ,i in diagonal space can be computed as Ψ,i(F (K))
∣∣
U=V =I

.

It is a diagonal matrix whose diagonals are ∂Ψ̂
∂σi

and corresponds to P̂ (Σ̂) from Section 6.1.

The stress derivatives in diagonal space are similarly given by Ψ,ij(F (K))
∣∣
U=V =I

. This

corresponds to the ∂P
∂F

(Σ) from Section 6.1. When this computation is performed, one finds

that the 9 × 9 matrix can be permuted into a block diagonal matrix with diagonal blocks

A3×3, B2×2
12 , B2×2

13 , B2×2
23 .

A =


M1111 M1122 M1133

M2211 M2222 M2233

M3311 M3322 M3333

 =


Ψ̂,σ1σ1 Ψ̂,σ1σ2 Ψ̂,σ1σ3

Ψ̂,σ2σ1 Ψ̂,σ2σ2 Ψ̂,σ2σ3

Ψ̂,σ3σ1 Ψ̂,σ3σ2 Ψ̂,σ3σ3


and

Bij =

Mijij Mijji

Mjiij Mjiji

 =
1

σ2
i − σ2

j

σiΨ̂,σi − σjΨ̂,σj σjΨ̂,σi − σiΨ̂,σj

σjΨ̂,σi − σiΨ̂,σj σiΨ̂,σi − σjΨ̂,σj


for (ij) ∈ {(12), (13), (23)}.

The division by σ2
i − σ2

j is problematic when two singular values are nearly equal or

when two singular values nearly sum to zero. The latter is possible with a convention for

permitting negative singular values. Expanding Bij in terms of partial fractions yields the

useful decomposition

Bij =
1

2

Ψ̂,σi − Ψ̂,σj

σi − σj

1 1

1 1

+
1

2

Ψ̂,σi + Ψ̂,σj

σi + σj

 1 −1

−1 1

 .
Note that if Ψ̂ is invariant under permutation of the singular values, then Ψ̂,σi → Ψ̂,σj as

σi → σj. Thus, the first term can normally be computed robustly for an isotropic model

if implemented carefully. The other fraction has deeper implications. This term can be

computed robustly if Ψ̂,σi+Ψ̂,σj → 0 as σi+σj → 0. This property is unfavorable, as it means
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the constitutive model will have difficulty recovering from many inverted configurations. This

corresponds to the kink described in Section 6.2.1. Since we are specifically interested in

models with robust behavior under inversion, this term will necessarily be unbounded when

σi + σj ≈ 0. The best that we can hope to do in this case is avoid numerical problems by

modifying the derivatives. We do this by clamping the magnitude of the denominator to

not be smaller than 10−6 before division. Since this change does not affect the stresses, it

does not affect the constitutive behavior, and its consequences will primarily be numerical

in nature. We have not observed any ill effects from this alteration.

B.2 C1 Model

In this section, we construct the energy density and its derivatives for the C1 extrapolation

model. We begin by presenting the model in 3D. This model has four regions, depending on

how many singular values are below the cutoff σi = a. If all of the singular values are above

this threshold, then the energy is just the base model Ψ. Next, assume one singular value

crosses this threshold (σ3 < a), and let ∆σ3 = σ3 − a < 0. Let

φ = Ψ|q gi =
∂Ψ

∂σi

∣∣∣∣
q

Hij =
∂2Ψ

∂σi∂σj

∣∣∣∣
q

Tijk =
∂3Ψ

∂σi∂σj∂σk

∣∣∣∣
q

Aijkl =
∂4Ψ

∂σi∂σj∂σk∂σl

∣∣∣∣
q

.

Then we extrapolate the energy across the threshold, add a quadratic term, and compute

the derivatives

Ψ̂ = φ+ g3∆σ3 + k∆σ2
3

∂Ψ̂

∂σ1

= g1 +H13∆σ3
∂Ψ̂

∂σ3

= g3 + 2k∆σ3

∂2Ψ̂

∂σ2
1

= H11 + T113∆σ3
∂2Ψ̂

∂σ2
3

= 2k
∂2Ψ̂

∂σ1∂σ2

= H12 +H12∆σ3
∂2Ψ̂

∂σ1∂σ3

= H13

The remaining terms are obtained by exchanging the indices 1 and 2.

If we instead assume two singular values cross this threshold (σ2 < a, σ3 < a), and let

∆σ2 = σ2 − a < 0 and ∆σ3 = σ3 − a < 0. Then the extrapolated energy is

Ψ̂ = φ+ g2∆σ2 + g3∆σ3 +H23∆σ2∆σ3 + k∆σ2
2 + k∆σ2

3
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∂Ψ̂

∂σ1

= g1 +H12∆σ2 +H13∆σ3 + T123∆σ2∆σ3
∂Ψ̂

∂σ2

= g2 +H23∆σ3 + 2k∆σ2

∂2Ψ̂

∂σ2
1

= H11 + T112∆σ2 + T113∆σ3 + A1123∆σ2∆σ3
∂2Ψ̂

∂σ2
2

= 2k

∂2Ψ̂

∂σ1∂σ2

= H12 + T123∆σ3
∂2Ψ̂

∂σ2∂σ3

= H23

The remaining terms are obtained by exchanging the indices 2 and 3.

Finally, if all three singular values cross the threshold (σ1 < a, σ2 < a, σ3 < a), let

∆σ1 = σ1 − a < 0, ∆σ2 = σ2 − a < 0 and ∆σ3 = σ3 − a < 0. Then the extrapolated energy

is then

Ψ̂ = φ+ g1∆σ1 + g2∆σ2 + g3∆σ3 +H12∆σ1∆σ2 +H13∆σ1∆σ3 +H23∆σ2∆σ3

+ T123∆σ1∆σ2∆σ3 + k∆σ2
1 + k∆σ2

2 + k∆σ2
3

∂Ψ̂

∂σ1

= g1 +H12∆σ2 +H13∆σ3 + T123∆σ2∆σ3 + 2k∆σ1

∂2Ψ̂

∂σ2
1

= 2k

∂2Ψ̂

∂σ1∂σ2

= H12 + T123∆σ3

The remaining derivatives are obtained by cycling the indices.

B.2.1 Continuity

To see that the model is in fact C1, we need to show that the energy and first derivatives

match at the interfaces between regions. In the case of one singular value right at the

extrapolation surface, ∆σ3 → 0, and

Ψ̂ = φ+ g3∆σ3 + k∆σ2
3 → φ

∂Ψ̂

∂σ1

= g1 +H13∆σ3 → g1
∂Ψ̂

∂σ3

= g3 + 2k∆σ3 → g3.

These are just the base model. At the transition from two to one singular values outside the

extrapolation surface, ∆σ2 → 0 and

Ψ̂ = φ+ g2∆σ2 + g3∆σ3 +H23∆σ2∆σ3 + k∆σ2
2 + k∆σ2

3 → φ+ g3∆σ3 + k∆σ2
3
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∂Ψ̂

∂σ1

= g1 +H12∆σ2 +H13∆σ3 + T123∆σ2∆σ3 → g1 +H13∆σ3

∂Ψ̂

∂σ2

= g2 +H23∆σ3 +2k∆σ2 → g2 +H23∆σ3
∂Ψ̂

∂σ3

= g3 +H23∆σ2 +2k∆σ3 → g3 +2k∆σ3

These agree with the values obtained when only one singular value was extrapolated. Finally,

in the transition from three to two singular values outside the extrapolation surface, ∆σ1 → 0

and

Ψ̂ = φ+ g1∆σ1 + g2∆σ2 + g3∆σ3 +H12∆σ1∆σ2 +H13∆σ1∆σ3 +H23∆σ2∆σ3

+ T123∆σ1∆σ2∆σ3 + k∆σ2
1 + k∆σ2

2 + k∆σ2
3

→ φ+ g2∆σ2 + g3∆σ3 +H23∆σ2∆σ3 + k∆σ2
2 + k∆σ2

3

∂Ψ̂

∂σ1

= g1 +H12∆σ2 +H13∆σ3 + T123∆σ2∆σ3 + 2k∆σ1

→ g1 +H12∆σ2 +H13∆σ3 + T123∆σ2∆σ3

∂Ψ̂

∂σ2

= g2 +H23∆σ3 +H12∆σ1 + T123∆σ1∆σ3 + 2k∆σ2

→ g2 +H23∆σ3 + 2k∆σ2

These match the expressions obtained for the case where two singular values are beyond the

extrapolation surface, so C1 continuity is established.

B.3 C2 Model

This section provides a detailed derivation of the energy density and its derivatives for the

C2 model described in Section 6.3.2.

In this section, index notation is used for conciseness and clarity. We follow the convention

that letters (i, j, k, . . .) are used for indices with the Einstein summation assumed. In a few

places, this convention does not fit will. For those cases, we use Greek letters (α, β, γ, . . .)

for the index to indicate that summation over that index is never implied. Indices that occur

after a comma are differentiated. Thus, Ψ,i = ∂Ψ
∂σi

and ui,jk = ∂2ui
∂σjσk

. Summation limits are

not stated and should go up to the dimension (that is, 2 or 3). The derivation that follows

is valid in any dimension, except where noted.
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The base energy Ψ is the be extended to the extrapolated energy Ψ̂ at the point Σ̂ by

extrapolating along the line to the rest configuration r (ri = 1 for all i). The direction of

the line is ui = m(σi − ri), with m = ‖Σ̂ − r‖−1. This line intersects the contour J = a at

qi = ri+(σi−ri)s. The distance along this line from the contour to Σ̂ is then h = (σi−qi)ui.

The extrapolated energy is Ψ̂ = φ + hgjuj + 1
2
h2Hljuluj, where φ = Ψ

∣∣
q
, gi = Ψ,i

∣∣
q
, and

Hij = Ψ,ij

∣∣
q
. The scalar s is given by the polynomial equation a =

∏
α(rα + (σα − rα)s).

The differentiation of Ψ̂ at first may seem like an impossible task, particularly in terms

of debugging. We compute the extrapolated energy in many small intermediate steps, and

then we differentiate each of those steps along the way to construct the extrapolated energy

derivatives. This breaks the task down into many simpler quantities, which simplifies the

implementation. This has the added advantage that the derivatives of each intermediate

quantity can be checked numerically, which drastically simplifies the debugging process. See

section B.4 for suggestions on testing derivatives numerically.

B.3.1 Simple Quantities

First, we start with a few simple quantities. The quantity δij = 1 if i = j, and δij = 0

otherwise. The scalar m is the reciprocal of the distance between r and Σ̂, which is a

convenient intermediate in computing ui, the direction along with extrapolation occurs.

σi,j = δij

δij,k = 0

ri,j = 0

m = ‖Σ̂− r‖−1

m,i = −(σi − ri)m3

m,ij = −δijm3 + 3(σi − ri)(σj − rj)m5
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ui = m(σi − ri)

ui,k = m,k(σi − ri) +mδik

ui,kj = m,kj(σi − ri) + (m,kδij +m,jδik)

These quantities do not depend on anything else. Throughout this derivation, we will group

pairs of terms in Hessians that are symmetric as we have done in the expression for ui,kj with

(m,kδij + m,jδik). In practice, one of these terms should be computed and then transposed

to obtain the other.

B.3.2 Point on Extrapolation Surface

Next, we define q as the location where extrapolation begins. It is the location on the

segment connecting the rest configuration r and the current configuration Σ̂ that intersects

the extrapolation surface. The energy density will be extrapolated along the segment from

q to Σ̂. The length of this segment is denoted h.

qi = ri + (σi − ri)s

qi,j = δijs+ (σi − ri)s,j

qi,jk = (δijs,k + δiks,j) + (σi − ri)s,jk

h = (σi − qi)ui

h,j = (δij − qi,j)ui + (σi − qi)ui,j

h,jk = −qi,jkui + ((δij − qi,j)ui,k + (δik − qi,k)ui,j) + (σi − qi)ui,jk

Note that these quantities depend on an interpolation fraction s (with 0 < s < 1) and its

derivatives, which we compute next.
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B.3.3 Interpolation Fraction

The interpolating fraction is constrained to lie on the extrapolation surface given by
∏

α qα =

a for some constant 0 < a < 1. This leads to the equation

a =
∏
α

qα =
∏
α

(rα + (σα − rα)s).

This is a cubic equation in the scalar variable s. Note that when s = 0

∏
α

(rα + (σα − rα)s)− a =
∏
α

rα − a = 1− a > 0,

and at s = 1 ∏
α

(rα + (σα − rα)s)− a =
∏
α

σα − a = J < 0.

Thus, we are guaranteed that there will exist a solution s to the cubic in the interval (0, 1).

We compute this intersection using the bisection method since it is efficient and robust.

To compute the derivatives, we use implicit differentiation. We introduce two intermedi-

ate scalars ζ and ξ (with no particular physical interpretation) to simplify these computa-

tions.

ζ =
∑
α

σα − rα
qα

ζ,β =
1

qβ
−
∑
α

σα − rα
q2
α

qα,β

ζ,βγ = −

(
qβ,γ
q2
β

+
qγ,β
q2
γ

)
+ 2

∑
α

σα − rα
q3
α

qα,βqα,γ −
∑
α

σα − rα
q2
α

qα,ik

ξ = ζ−1

ξ,k = −ξ2ζ,k

ξ,ki = 2ξ3ζ,kζ,i − ξ2ζ,ki
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Now, we can proceed with the differentiation of s.

0 =
∑
α

δαks+ (σα − rα)s,k
rα + (σα − rα)s

s,β = −s

(∑
α

σα − rα
rα + (σα − rα)s

)−1∑
α

δαβ
rα + (σα − rα)s

= − s

qβ

(∑
α

σα − rα
qα

)−1

= −sξ
qβ

s,βγ = −s,γξ
qβ
− sξ,γ

qβ
+
sξqβ,γ
q2
β

=
sξ2

qβqγ
− sξ,γ

qβ
+
sξqβ,γ
q2
β

All the quantities introduced so far can now be computed. The expression for s,βγ can be

shown to be symmetric.

B.3.4 Base Model

The base model and its first four derivatives are required on the extrapolation surface to

compute the stress derivatives. These quantities are all evaluated at the point qi.

φ = Ψ
∣∣
q

gi = Ψ,i

∣∣
q

Hij = Ψ,ij

∣∣
q

Tijk = Ψ,ijk

∣∣
q

Aijkl = Ψ,ijkl

∣∣
q

These quantities are symmetric in all of their indices. We will also use some of the derivatives

of these quantities. Note that the point qi is constrained to the extrapolation surface, so the

90



derivatives of these will depend on the derivatives of qi.

φ,i = gkqk,i

φ,ij = gk,jqk,i + gkqk,ij

gk,i = Hkmqm,i

gk,ij = Tkmnqm,iqn,j +Hkmqm,ij

Hkl,i = Tklmqm,i

Hkl,ij = Aklmnqm,iqn,j + Tklmqm,ij

B.3.5 Extrapolated Energy

We now have all of the quantities we need to compute Ψ̂ and its derivatives. The scalars

gkuk and Hklukul are required for interpolation, and we differentiate them separately first.

b = gkuk

b,i = gk,iuk + gkuk,i

b,ij = gk,ijuk + (gk,iuk,j + gk,juk,i) + gkuk,ij

c = Hklukul

c,i = Hkl,iukul + 2Hkluk,iul

c,ij = Hkl,ijukul + (2Hkl,iuk,jul + 2Hkl,juk,iul) + 2Hkluk,ijul + 2Hkluk,iul,j

d = Tkljukuluj

Finally, we compute the extrapolated energy and its derivatives.

Ψ̂ = φ+ hb+
1

2
h2c

Ψ̂,i = φ,i + h,ib+ hb,i + hh,ic+
1

2
h2c,i

Ψ̂,ik = φ,ik + h,ikb+ (h,ib,k + h,kb,i) + hb,ik + h,kh,ic+ hh,ikc+ (hh,ic,k + hh,kc,i) +
1

2
h2c,ik
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B.3.6 Robustness

The formula for
∂Pij
∂Fkm

requires that terms of the form

Ψ̂,i − Ψ̂,t

σi − σt

be computed robustly. To work out a robust way to do this, it will be very convenient to

introduce some new notation. We take the index [it] to indicate quantities like

B[it] =
Bi −Bt

σi − σt
Ck,[it] =

Ck,i −Bk,t

σi − σt

where it is assumed that i 6= t. We are after the quantity Ψ̂,[it]. We will also reuse notation

slightly. Since ri = 1, we will use it for this purpose even when the usage is unrelated to the

rest configuration. With this, we can say σ[it] = rirt and r[it] = 0. Note that hm+ s = 1 and

Bkδk[it] = B[it].

u[it] = m(σ[it] − r[it]) = mrirt

m,[it] = −(σ[it] − r[it])m
3 = −m3rirt

uj,[it] = m−1m,[it]uj +mδj[it]

= −m2ujrirt +mδj[it]

q[it] = r[it] + (σ[it] − r[it])s = srirt

s,[it] =
s,i − s,s
σi − σt

= −sξ q
−1
i − q−1

t

σi − σt
= −sξq−1

i q−1
t

qt − qi
σi − σt

= sξq−1
i q−1

t q[it]

= s2ξq−1
i q−1

t

qm,[it] = δm[it]s+ (σm − rm)s,[it]

= δm[it]s+m−1ums,[it]
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h,[it] = u[it] − qk,[it]uk + (σk − qk)uk,[it]

= mrirt − su[it] −m−1uks,[it]uk + huk(m
−1m,[it]uk +mδk[it])

= mrirt + (hm− s)u[it] −m−1s,[it] + hukm
−1m,[it]uk

= (hm− s+ 1)mrirt −m−1s,[it] − hm2rirt

= hm2rirt −m−1s,[it]

φ,[it] = gkqk,[it]

= g[it]s+m−1bs,[it]

gj,[it] = Hjmqm,[it]

= Hj[it]s+m−1Hjmums,[it]

Hkl,[it] = Tklmqm,[it]

= sTkl[it] +m−1Tklmums,[it]

b,[it] = gk,[it]uk + gkuk,[it]

= Hk[it]suk +m−1Hkmums,[it]uk − gkm2ukrirt + gkmδk[it]

= Hk[it]suk +m−1cs,[it] − bm2rirt +mg[it]

c,[it] = Hkl,[it]ukul + 2Hkluk,[it]ul

= sTkl[it]ukul +m−1ds,[it] − 2Hklmukrirtul + 2Hklmδk[it]ul

= sTkl[it]ukul +m−1ds,[it] − 2cmrirt + 2Hk[it]muk

Finally, we can assemble the desired quantity Ψ̂,[it].

h,[it]b+ hb,[it] = −m−1s,[it]b+ hm2rirtb+ hHk[it]suk + hm−1cs,[it] − hbm2rirt + hmg[it]

= m−1(hc− b)s,[it] + hsHk[it]uk + hmg[it]

hh,[it]c+
1

2
h2c,[it] = −hcm−1s,[it] + h2cm2rirt +

1

2
h2sTkl[it]ukul

+
1

2
h2m−1ds,[it] − h2cmrirt + h2Hk[it]muk

=
1

2
m−1h(hd− 2c)s,[it] +

1

2
h2sTkl[it]ukul + h2Hk[it]muk
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Ψ̂,[it] = φ,[it] + h,[it]b+ hb,[it] + hh,[it]c+
1

2
h2c,[it]

= φ,[it] +m−1(hc− b)s,[it] + hsHk[it]uk + hmg[it] +
1

2
m−1h(hd− 2c)s,[it]

+
1

2
h2sTkl[it]ukul + h2Hk[it]muk

= φ,[it] +
1

2
m−1

(
h2d− 2b

)
s,[it] + hHk[it]uk + hmg[it] +

1

2
h2sTkl[it]ukul

= g[it]s+m−1bs,[it] +
1

2
m−1

(
h2d− 2b

)
s,[it] + hHk[it]uk + hmg[it] +

1

2
h2sTkl[it]ukul

= g[it] + hHk[it]uk +
1

2
h2sTkl[it]ukul +

1

2
m−1h2ds,[it]

This formula is elegant, but unfortunately Hk[it] and Tkl[it] cannot be computed robustly.

The solution to this problem is to compute hHk[it]uk and Tkl[it]ukul, since they can be

computed robustly. Consider the computation of hHk[12]uk (the others can be obtained by

cycling indices).

H[12]juj = H[12]1u1 +H[12]2u2 +H[12]3u3

=
H11u1 −H12u1 +H12u2 −H22u2

σ1 − σ2

+H[12]3u3

=
H11u1 −H11u2

σ1 − σ2

+
H11u2 −H22u2

σ1 − σ2

− H12u1 −H12u2

σ1 − σ2

+H[12]3u3

= H11u[12] +H[11,22]u2 −H12u[12] +H[12]3u3

where we have introduced the new notation

H[11,22] =
H11 −H22

σ1 − σ2

.

The resulting terms can each be computed robustly. Note that expanding in this way allows

us to isolate the base model (H11, H12, H[12]3, H[11,22]) from the details of the extrapolation

(u2, u3, u[12]).
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Similarly, we can compute Tjk[12]ujuk robustly

Tjk[12]ujuk = T33[12]u3u3 + T31[12]u3u1 + T32[12]u3u2 + T13[12]u3u1 + T11[12]u1u1

+ T12[12]u1u2 + T23[12]u3u2 + T21[12]u2u1 + T22[12]u2u2

= T33[12]u3u3 + 2T12[12]u1u2 + 2T31[12]u3u1 + 2T32[12]u3u2 + T11[12]u1u1 + T22[12]u2u2

= T33[12]u3u3 + 2T12[12]u1u2 + 2u3(T311u[12] + T3[11,22]u2 − T312u[12])

+ (T[111,222] − T12[12])u
2
1 + (T222 − T122)

u2
1 − u2

2

σ1 − σ2

= T33[12]u3u3 + 2T12[12]u1u2 + 2u3(T311u[12] + T3[11,22]u2 − T312u[12])

+ (T[111,222] − T12[12])u
2
1 +m2(T222 − T122)(σ1 + σ2 − 2)

where we have introduced the new notation

T3[11,22] =
T311 − T322

σ1 − σ2

T[111,222] =
T111 − T222

σ1 − σ2

.

As before, these quantities can be computed robustly, and the base model is isolated from

the details of the extrapolation. The 2D formulas for H[12]juj and Tjk[12]ujuk are obtained

by discarding all terms containing the index 3.

B.3.7 Continuity

To establish C2 continuity for this model, we need to establish that Ψ̂ = φ, Ψ̂,i = gi, and

Ψ̂,ik = Hik at the extrapolation surface. At this surface, s = 1 and h = 0. With these,

qi = ri + (σi − ri)s

qi = σi

qi,j = δijs+ (σi − ri)s,j

= δij +m−1uis,j
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δij − qi,j = −m−1uis,j

h,j = (δij − qi,j)ui + (σi − qi)ui,j

= −m−1s,j

h,jk = −qi,jkui + ((δij − qi,j)ui,k + (δik − qi,k)ui,j) + (σi − qi)ui,jk

= −qi,jkui

gk,i = Hkmqm,i

= Hki +m−1Hkmums,i

gk,ij = Tkmnqm,iqn,j +Hkmqm,ij

= Tkmnqm,iqn,j +Hkmqm,ij

b,i = gk,iuk + gkuk,i

= Hkiuk +m−1Hkmums,iuk +m,i(σk − rk)gk +mgi

= Hkiuk +m−1cs,i +m,im
−1b+mgi

= Hkiuk +m−1cs,i + (gi − uib)m

With these, C1 is established readily

Ψ̂ = φ+ hb+
1

2
h2c

= φ

Ψ̂,i = φ,i + h,ib+ hb,i + hh,ic+
1

2
h2c,i

= φ,i + h,ib

= gkqk,i −m−1s,ib

= gi + gkukm
−1s,i −m−1s,ib

= gi
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Finally, C2 can be established with a bit of work.

Ψ̂,ik = φ,ik + h,ikb+ (h,ib,k + h,kb,i) + hb,ik + h,kh,ic+ hh,ikc+ (hh,ic,k + hh,kc,i) +
1

2
h2c,ik

= φ,ik + h,ikb+ (h,ib,k + h,kb,i) + h,kh,ic

= gj,kqj,i + gjqj,ik − qj,ikujb+ (h,ib,k + h,kb,i) + h,kh,ic

= gj,kqj,i + (gj − ujb)qj,ik + (h,ib,k + h,kb,i) + h,kh,ic

= gj,kqj,i + (gj − ujb)(δjis,k + δjks,i +m−1ujs,ik) + (h,ib,k + h,kb,i) + h,kh,ic

= gj,kqj,i + (gi − uib)s,k + (gk − ukb)s,i + (h,ib,k + h,kb,i) + h,kh,ic

= gj,kqj,i + (b,i − (gi − uib)m)h,k + (b,k − (gk − ukb)m)h,i + h,kh,ic

= gj,kqj,i + (Hjiuj +m−1cs,i)h,k + (Hjkuj +m−1cs,k)h,i + h,kh,ic

= gj,kqj,i − ch,ih,k +Hjiujh,k +Hjkujh,i

= gi,k − gj,kujh,i − ch,ih,k +Hjiujh,k +Hjkujh,i

= Hik +m−1Himums,k −Hjkujh,i −m−1Hjmums,kujh,i − ch,ih,k +Hjiujh,k +Hjkujh,i

= Hik −m−1Hjmums,kujh,i − ch,ih,k

= Hik

This establishes C2 continuity for this model.

B.4 Note on Testing Derivatives Numerically

We suggest above that the derivatives can be tested numerically. Here, we present a simple

yet effective way to do this. Choose a small random perturbation δx. Suppose we have a

scalar f and its derivative ∇f evaluated at x and δx. Then,

f(x+ δx)− f(x)− 1

2
(∇f(x+ δx) +∇f(x)) · δx = O(‖δx‖3).

This test compares a second order accurate central difference approximation against a second

order average, which makes the test much less ambiguous. When the test fails, the error will

generally only be of order O(‖δx‖). If the quantities being tested are on the order of one,
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then it is most effective to choose ‖δx‖3 to be around floating point precision. If f were

instead a vector quantity, then the error quantity computed on the left hand side would be

a vector, which should be nearly zero. Second order derivatives are tested against first order

derivatives.

B.5 Energy Derivatives for Elasto-Plastic Snow Model

B.5.1 Total Energy Derivatives

Given an elasto-plastic energy density function Ψ(FE,FP ) which evaluates to Ψp = Ψ(F̂Ep(x̂),F n
Pp)

at each particle p using its elastic and plastic parts of the deformation gradient F̂Ep(x̂) and

F n
Pp, we define the full potential energy of the system to be

Φ(x̂) =
∑
p

V 0
p Ψ(F̂Ep(x̂),F n

Pp) =
∑
p

V 0
p Ψp,

where F̂Ep(x̂) is updated as

F̂Ep(x̂) =

(
I +

∑
i

(x̂i − xni )(∇wnip)T
)
F n
Ep. (B.1)

For the purposes of working out derivatives, we use index notation for differentiation,

using Greek indices α, β, . . . for spatial indices, Φ,(jσ) to indicate partial derivatives on xjσ,

Φ,(αβ) to indicate partial derivatives on FEαβ, and summation implied over all repeated

indices. The derivatives of F̂Ep with respect to xi are

F̂Epαβ =
(
δαγ + (xiα − xniα)wnip,γ

)
F n
Epγβ

F̂Epαβ,(jσ) = δασw
n
jp,γF

n
Epγβ

F̂Epαβ,(jσ)(kτ) = 0
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With these, the derivatives of Φ with respect to xi can be worked out using the chain rule

Φ = V 0
p Ψp

Φ,(jσ) =
∑
p

V 0
p Ψp,(αβ)F̂Epαβ,(jσ)

=
∑
p

V 0
p Ψp,(σβ)w

n
jp,γF

n
Epγβ

Φ,(jσ)(kτ) =
∑
p

(V 0
p Ψp,(σβ)w

n
jp,γF

n
Epγβ),(kτ)

=
∑
p

V 0
p Ψp,(σβ)(τκ)w

n
jp,γF

n
Epγβw

n
kp,ωF

n
Epωκ

These can be interpreted without the use of indices as

− fi(x̂) =
∂Φ

∂x̂i
(x̂) =

∑
p

V 0
p

∂Ψ

∂FE
(F̂Ep(x̂),F n

Pp)(F
n
Ep)

T∇wnip (B.2)

and

− δfi =
∑
j

∂2Φ

∂x̂i∂x̂j
(x̂)δuj =

∑
p

V 0
p Ap(F

n
Ep)

T∇wnip (B.3)

where

Ap =
∂2Ψ

∂FE∂FE
(FE(x̂),F n

Pp) :

(∑
j

δuj(∇wnjp)TF n
Ep

)
. (B.4)

and the notation A = C : D is taken to mean Aij = CijklDkl with summation implied on

indices kl.

B.6 Energy Density Derivatives

For integration, we need to compute ∂Ψ
∂FE

and ∂2Ψ
∂FE∂FE

: δD. In this section, we will omit the

subscripts E.

Ψ = µ‖F −R‖2
F +

λ

2
(J − 1)2
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δΨ = δ

(
µ‖F −R‖2

F +
λ

2
(J − 1)2

)
= µδ

(
‖F −R‖2

F

)
+ λ(J − 1)δJ

= µδ
(
tr(F TF )

)
− 2µδ

(
tr(RTF )

)
+ µδ

(
tr(RTR)

)
+ λ(J − 1)δJ

= 2µF : δF − 2µδ(tr(S)) + λ(J − 1)JF−T : δF

= 2µF : δF − 2µtr(δS) + λ(J − 1)JF−T : δF

F = RS

δF = δRS +RδS

tr(δS) = tr(RT δF )− tr(RT δRS)

= tr(RT δF )− (RT δR) : S

= tr(RT δF )

= R : δF

Note that since RTR = I, RT δR must be skew-symmetric. Since S is symmetric, (RT δR) :

S = 0. Finally,

δΨ = 2µF : δF − 2µtr(δS) + λ(J − 1)JF−T : δF

= 2µF : δF − 2µR : δF + λ(J − 1)JF−T : δF

∂Ψ

∂F
: δF =

(
2µF − 2µR+ λ(J − 1)JF−T

)
: δF

∂Ψ

∂FE
= 2µ(FE −RE) + λ(JE − 1)JEF

−T
E

Note that Cauchy stress σ and first Piola-Kirchhoff stress P are related to ∂Ψ
∂FE

by

σ =
1

J

∂Ψ

∂FE
F T
E =

2µ

J
(FE −RE)F T

E +
λ

J
(JE − 1)JEI P =

∂Ψ

∂FE
F−TP

The second derivatives require a bit more care but can be computed relatively easily.

∂2Ψ

∂F ∂F
: δF = δ

(
∂Ψ

∂F

)
= δ(2µ(F −R) + λ(J − 1)JF−T )

= 2µδF − 2µδR+ λJF−T δJ + λ(J − 1)δ(JF−T )

= 2µδF − 2µδR+ λJF−T (JF−T : δF ) + λ(J − 1)δ(JF−T )
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Since JF−T is a matrix whose entries are polynomials in the entries of F , δ(JF−T ) =

∂
∂F

(JF−T ) : δF can readily be computed directly. That leaves the task of computing δR.

δF = δRS +RδS

RT δF = (RT δR)S + δS

RT δF − δF TR = (RT δR)S + S(RT δR)

Here we have taken advantage of the symmetry of δS and the skew symmetry of RT δR.

There are three independent components of RT δR, which we can solve for directly. The

equation is linear in these components, so RT δR can be computed by solving a 3×3 system.

Finally, δR = R(RT δR).
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[72] M. Pla-Castells, I. Garćıa-Fernández, and R. Mart́ınez. Interactive terrain simulation
and force distribution models in sand piles. Cellular Automata, pages 392–401, 2006.

[73] R. A. Rutenbar. Simulated annealing algorithms: an overview. IEEE Circuits and
Devices Magazine, 5:19–26, 1989.

[74] S. Sane. Rate dependent constitutive modeling of engineering materials: model devel-
opment and numerical implementation. Lightning Source Incorporated, 2009.

[75] J. L. Schafer and J. W. Graham. Missing data: our view of the state of the art.
Psychological Methods, 7:147–177, 2002.

[76] R. Schmedding and M. Teschner. Inversion handling for stable deformable modeling.
Vis. Comp., 24:625–633, 2008.

[77] A. Selle, M. Lentine, and R. Fedkiw. A mass spring model for hair simulation. In
ACM Trans. on Graph., volume 27, pages 64.1–64.11, 2008.

106



[78] A. Shamir, V. Pascucci, and C. Bajaj. Multi-resolution dynamic meshes with arbitrary
deformations. In Proc. IEEE Vis., pages 423–430, 2000.

[79] M. Short, M. D’Orsogna, P. Brantingham, and G. Tita. Measuring and modeling
repeat and near-repeat burglary effects. Journal of Quantitative Criminology, 25:325–
339, 2009.

[80] M. Short, G. Mohler, P. J. Brantingham, and G. Tita. Gang rivalry dynamics via
coupled point process networks. Discrete and Continuous Dynamical Systems, 2013.

[81] F. Sin, Y. Zhu, Y. Li, D. Schroeder, and J. Barbic. Invertible isotropic hyperelasticity
using svd gradients. In Poster: Symp. Comp. Anim., pages 1–2, 2011.

[82] W. St Lawrence and C.C. Bradley. The deformation of snow in terms of structural
mechanism. In Snow Mech. Symp., page 155, 1975.

[83] M. Steffen, R. Kirby, and M. Berzins. Analysis and reduction of quadrature errors in
the material point method (MPM). Int. J. Numer. Meth. Engng, 76(6):922–948, 2008.

[84] D. Sulsky, S.-J. Zhou, and H.L. Schreyer. Application of particle-in-cell method to
solid mechanics. Comp. Phys. Comm., 87:236–252, 1995.

[85] R.W. Sumner, J.F. O’Brien, and J.K. Hodgins. Animating sand, mud, and snow. In
Comp. Graph. Forum, volume 18, pages 17–26, 1999.

[86] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. Robust quasistatic finite elements and
flesh simulation. In Proc. Symp. Comp. Anim., pages 181–190, 2005.

[87] D. Terzopoulos and W. Fleischer. Modeling inelastic deformation: viscoelasticity,
plasticity, fracture. Proc. ACM SIGGRAPH 1988, 22(4):269–278, 1988.

[88] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models.
ACM SIGGRAPH, 21:205–214, 1987.

[89] M. Teschner, B. Heidelberger, M. Müller, and M. Gross. A versatile and robust model
for geometrically complex deformable solids. In Proc. Comp. Graph. Int., pages 312–
319, 2004.

[90] G. Tita. Reducing gun violence: results from an intervention in East Los Angeles.
RAND Corporation, Santa Monica, CA, 2003.

[91] G. Tita and G. Ridgeway. The impact of gang formation on local patterns of crime.
Journal of Research in Crime and Delinquency, 44:208–237, 2007.

[92] C. Truesdell and W. Noll. The non-linear field theories of mechanics. Springer, 2004.

[93] M. Wicke, D. Ritchie, B. Klingner, S. Burke, J. Shewchuk, and J. O’Brien. Dynamic
local remeshing for elastoplastic simulation. ACM Trans. Graph., 29:49:1–49:11, 2010.

107



[94] W.J. Wiscombe and S.G. Warren. A model for the spectral albedo of snow. i: pure
snow. J. of the Atmospheric Sciences, 37(12):2712–2733, 1980.
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