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ABSTRACT
We present an approach to simulating underwater bubbles. Our
method is sparse in that it only simulates a thin band of water
around the region of interest allowing us to achieve high resolu-
tions in turbulent scenarios. We use a hybrid bubble representation
consisting of two parts. The hero counterpart utilizes an incompress-
ible two-phase Navier-Stokes solve on an Eulerian grid with air
phase also represented via FLIP/APIC particles to facilitate volume
conservation and accurate interface tracking. The diffuse counter-
part captures sub-grid bubble motion not “seen” by the Eulerian
grid. We represent those as particles and develop a novel scheme
for coupling them with the bulk fluid. The coupling scheme is not
limited to sub-grid bubbles and may be applied to other thin/porous
objects such as sand, hair, and cloth.
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1 INTRODUCTION
Underwater bubbles are fascinating. Bigger volumes of air exhibit
turbulent, almost explosive behavior as they shatter into mid-size,
more stable pockets and myriads of tiny ones forming foggy aerated
regions. The large density ratio between water and air (1000:1) is
responsible for this beautiful violent dynamics, and is also a reason
why bubbles are so difficult to simulate on a computer.

A number of papers have considered simulating underwater
bubbles. [Goldade and Batty 2017] adopt a FLIP fluid simulator to
represent each air pocket as a volume-conserving void with fixed
pressure. While able to recreate realistic gargling water effects the
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Figure 1: A large (∼250 liters) barrel filled with air overturning
under water is simulated with our method. ©Weta Digital Ltd 2020.

method does not capture subtle bubble details. [Boyd and Bridson
2012] use FLIP to discretize both water and air and perform a two-
phase incompressible solve. Bubbles smaller than a grid voxel size
are typically represented as a separate particle system. [Kim et al.
2010] passively advect those particles with the bulk fluid and use
them to adjust effective density of water, leading to naturalistic
buoyancy effects. They employ a stochastic solver for additional
sub-voxel motion. [Patkar et al. 2013] use an Eulerian two-phase
approach for simulating bubbles larger than the grid voxel size and
passively advected particles for tracking bubbles smaller than the
grid voxel size. They combine the two in a single linear solve which
also handles compressibility.

2 OUR APPROACH
We disregard compressibility for efficiency reasons and adopt a
two-phase incompressible ghost-fluid Eulerian solve for our hero
(larger than the voxel size) bubbles, similar to [Boyd and Bridson
2012]. Unlike them however, we use FLIP/APIC particles to only
track the air phase and recover the interface, while discretizing
water as purely Eulerian in a narrow band around the bubbles.
As we did not want the water to have an apparent sliding effect
with respect to invisible boundaries and also to avoid dealing with
null-modes in the Poisson pressure solve, we enforce hydrostatic
pressure boundary condition, as opposed to a flux velocity boundary
condition, on the outside of the narrow band p(h) = ρwдh, where
h is the evaluation height. An example of a hero bubble simulation
is shown in Figure 1.

We wanted our diffuse (smaller than the voxel size) bubbles to
accurately capture sub-grid dynamics, unlike previous methods
that would use them as trackersto modify the effective water den-
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Figure 2: Diffuse bubbles and cloth are coupled with FLIP water
through drag and buoyancy. ©Weta Digital Ltd 2020.

sity/expansion. We assign them velocities of their own and couple
with the bulk fluid through buoyancy and drag forces. In the limit
of infinite drag, our approach is equivalent to “passive advection +
density adjust”, a so-called Boussinesq approximation.

3 DIFFUSE BUBBLES AND COUPLING
Governing equations. To model interactions between the diffuse

bubble particles and the bulk fluid we adopt a continuum approach.
Let ϕb and ϕw = 1−ϕb denote the volume fractions of bubbles and
water respectively. Following [Anderson and Jackson 1967; Daviet
and Bertails-Descoubes 2017], we write the internal pressure of
the water and bubbles as fractions of the pore pressure p, that is
ϕbp and ϕwp, respectively. The force per unit volume exerted by
the water onto the bubbles is the sum of a generalized buoyancy
contribution, f buow→b = ϕw∇ (ϕbp) −ϕb∇ (ϕwp) = p∇ϕb , and a drag

term, f dragw→b = ξ (|uw−ub |)(uw−ub ), with ξ a possibly non-uniform
drag coefficient. The conservation of momentum equations for the
two phases thus read

ϕw ρw
Duw
Dt − ϕw ρwд + f

drag
w→b = −f buow→b − ∇ (ϕwp) ≡ −ϕw∇p,

ϕbρb
Dub
Dt − ϕbρbд − f

drag
w→b = f buow→b − ∇ (ϕbp) ≡ −ϕb∇p.

Assuming a non-zero water fraction and integrating the bubbles
conservation equation over the volume Vp of a particle yields

ρw
Duw
Dt = ρwд − 1

ϕw
f
drag
w→b − ∇p (water)

mp
dup
dt = mpд +

Vp
ϕb

f
drag
w→b −Vp∇p (bubble particles)

wheremp and up denote the mass and velocity of the bubble par-
ticle, respectively. The system is closed by enforcing incompress-
ibility of the mixture, ∇ · [ϕwuw + ϕbub ] = 0. By adding inter-
particle forces/constraints the model is naturally extended to handle
thin/porous solids such as hair, plants and cloth, see Figure 2.

Discretization. To benefit from efficient solvers for each object
we couple diffuse bubbles and the bulk fluid weakly. This becomes
especially useful for more complicated submerged materials such as
cloth and hair as they exhibit non-trivial elastic responses. Within
each Newton step of the solver we perform a Poisson projection
to obtain fluid velocity and pore pressure assuming prescribed
velocities of submerged materials, and then solve for the latter with
fluid velocity and pressure fixed. The diffuse bubbles are modeled
as Lagrangian particles interacting with the Eulerian bulk fluid
through buoyancy and drag, and additional splatting/interpolation
is required to transfer particle data to/from the Eulerian grid.

The drag force is calculated on the particles from the surrounding
fluid velocity. It is rasterized to the grid with aminus sign, and added

Figure 3: Frames of a toy moving through a bubble flow (left) and
a person breathing underwater (right). ©Weta Digital Ltd 2020.

as a force term to the bulk fluid. Typically, a linear drag model is
assumed when fluid flow around bubbles can be considered laminar,
however we have found that to not be the case in our turbulent
scenarios, and a quadratic drag force term was used to create more
realistic dynamics. Due to the non-linearity we have found that
an implicit treatment of the rasterized drag within the Poisson
pressure solve was important to achieve good convergence results.

4 DISCUSSION
Extensions. The method can be employed as post-processing

technique on top of an existing fluid simulation with no bubbles. Us-
ing the pressure values from the existing simulation as a boundary
condition on our sparse fluid domain, and “air bubble entrainment”
metric from [Gualtieri et al. 2008] to emit both hero and diffuse
bubbles we were able to achieve believable results.

Limitations and future work. Sparsity limits the hero bubble
technique to working under water only, and bubbles breaking the
surface may be an interesting future work exploring alternative
boundary conditions; in our post-processing application we simply
removed particles crossing the surface of the primary simulation.
Drag force coefficient needed to be tuned to achieve consistency
between hero and diffuse representations. Our diffuse bubbles do
not merge, and we would like to adopt methods such as [Jones and
Southern 2017].
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