
Rigging the Oceans of Disney’s “Moana”

Jonathan Garcia Sara Drakeley Sean Palmer
Erin Ramos David Hutchins Ralf Habel Alexey Stomakhin

Walt Disney Animation Studios∗

Figure 1: Our ocean rigs allowed our artists to stage and art direct various ocean types including, but not limited to, the open seas (left),
shorelines (center), and calm seas (right). c©2016 Disney.

Abstract

Disney’s “Moana” was set in an environment inspired by the Pacific
Islands, which made the ocean a prominent setting throughout the
film. For much of the film, we found it necessary to treat our oceans
like we would our hero characters, and so we developed three ocean
rigs that formed the basis of all our ocean variants. Using a uni-
fied workflow that our artists were already familiar with, these rigs
gave them the ability to easily portray and dial in a wide variety
of ocean types such as open seas, calm seas, stormy seas, lagoons,
shorelines, and wide ocean vistas, some which spanned hundreds of
kilometers out to the horizon. This paper describes the techniques
we used and some of the challenges we faced in developing these
ocean rigs.

Keywords: rigging, animation, oceans, Maya

Concepts: •Computing methodologies→ Computer graphics;
Animation;

1 Introduction

Our water pipeline in previous films was contained to one or two
departments and had limited authoring capabilities. We basically
had two types of water: procedural water and simulated water. For
our procedurally generated bodies of water, the Environments team
would create huge “ground planes” that represented the water sur-
face which were then displaced at render time by our shaders using
techniques inspired by Tessendorf Waves [Tessendorf 2004]. For
our simulated bodies of water, the Effects team would set up sim-
ulation domains, figure out how to blend those back into the main
(unsimulated) body of water, and then bake out the final water mesh
for downstream consumption. Outside of that, no other department
authored or modified bodies of water in our films.

∗email:[First Name].[Last Name]@disneyanimation.com
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. c© 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
SA ’16 Technical Briefs , December 05 - 08, 2016, , Macao
ISBN: 978-1-4503-4541-5/16/12 $15.00
DOI: http://dx.doi.org/10.1145/3005358.3005379

For “Moana”, we anticipated that over 1000 shots would contain
some variant of the ocean which would include some sort of in-
teraction with it (e.g., boat wakes, splashes, performance water,
shorelines, etc.). Because of the sheer volume of such shots, we
refined our pipeline to make the oceans first-class citizens so that
they could be updated piecemeal throughout our pipeline. Here is
a typical example of how our oceans were authored and updated in
this new pipeline:

1. Using one of the ocean variants our Environments team cre-
ated as a starting point, our Layout team refined the choppi-
ness of the waves and the timing of the ocean’s swells or the
timing of the water lapping up and down the beaches.

2. Our Animation team finessed the timing of the ocean param-
eters that Layout had set to fit the needs of their character
performances.

3. Our Effects team ran boat wake and splash simulations and
blended them back into the ocean, as needed.

4. Finally, our Lighting team added in photon caustics, adjusted
the ocean’s volume shader parameters, and dialed in mesh tes-
sellation and displacement parameters to tune the amount of
detail for the oceans.

This new pipeline was developed around the idea that we would
represent all of our oceans as level sets. The vast ocean expanse
was defined by heightfields and simulation data was represented as
signed distance functions. The blending of the simulations into the
heightfields was described by a level set compositing graph, which
is a set of nodes that read, blend and combine these inputs into a
single surface representation in our renderer.

Using an implicit representation for the oceans gave us great flex-
ibility. It allowed us to decouple the ocean mesh from its material
shader. So, we did not have to decide a priori the amount of de-
tail we needed to bake into the surface’s geometry since the mesh
was generated dynamically at render time. As such, our Effects
team could dial in their desired level of detail for the ocean sur-
faces before running their simulations. Any detail that was filtered
out of these surfaces could then be added back in by the displace-
ment shader. To get this to work, we had to ensure that the ocean’s
heightfield expressions used by both the displacement shader and
the level set composite graph were always in sync. We did this by
storing the heightfield expression as a string attribute on a locator
within the ocean element hierarchy so that it could then be refer-
enced by both the displacement shader and the level set composite
graph.

http://dx.doi.org/10.1145/3005358.3005379

We also created a library of ocean variants from which the artist
could choose, where each variant defined a different base height-
field expression and an associated base level set composite graph.
By varying our heightfield expressions, we could easily represent
different ocean surfaces procedurally (e.g., windy seas, calm seas,
stormy seas, lagoons, etc.). By varying our level set composite
graphs we could get simple oceans that were defined by a single
heightfield, or we could get more complex oceans that, for exam-
ple, blended a heightfield with a simulated shoreline and a few
boat wake simulations. Mixing and matching different variations
of heightfield expressions with different composite graphs gave us
unlimited creative control over our oceans. With this, we now had a
foundation for developing ocean rigs that encapsulated this flexibil-
ity while presenting a unified and efficient workflow for updating
our oceans’ characteristics.

2 Our Ocean Rigs

Our ocean rigs were developed leveraging off of two key concepts:
representing the ocean as level sets and storing the ocean’s height-
field expressions in a single attribute that can be referenced by var-
ious parts of our pipeline. Using those ideas as the foundation of
our rig designs, we identified three different types of rigs that would
allow us to portray the wide variety of ocean types required by our
film’s art direction: (1) an open sea rig, (2) a shoreline rig, and (3)
a distant ocean rig.

Figure 2: The flexibility of our heightfield expressions allowed us
to blend multiple types of oceans into a single asset. The screen-
shot above shows how we could seamlessly blend the lagoon (the
lighter blue water) and the open sea (the darker blue water) regions
of the ocean using a single expression. Our ocean rig for this vari-
ant exposed controls that allowed each region’s parameters to be
adjusted independently from the other. c©2016 Disney.

2.1 Open Sea Rigs

2.1.1 Editing Heightfields

It was undesirable to have artists directly edit the ocean expressions.
We wanted to limit the ability to hand edit these expressions to min-
imize issues in trying to keep the one used by the level set composite
graph in sync with the one used by the displacement shader. These
expressions were also relatively complex and we wanted to reduce
the chance of typos, syntax errors, and deviation from the base ex-
pression defined by our Environments team. Furthermore, not all
artists were comfortable editing SeExpr, our in-house open source
embedded expression language. As a result, we developed a custom
Maya node that was effectively an expression builder (Fig. 3).

This custom node was the foundation of our ocean rigs and greatly
simplified the workflow for editing the heightfield expressions. Our
Environments team created the ocean’s base heightfield expression
and chose default values for most of the expression’s parameters,
hitting the broad strokes of the desired art direction. By exposing

Figure 3: By templatizing our expressions and using our custom
Maya node, artists could adjust the heightfield expression parame-
ters via Maya’s channel box. This presented them with a familiar
workflow, reducing the learning curve for working with the oceans.

the rest of the parameters in the rig, our Layout artists could fine-
tune the ocean to fit their chosen composition and scene layout.
Making it a custom Maya node also let us easily build the ocean rig
in such a way that its controls looked and felt like one of our typical
character rigs.

This mechanism of editing the expression in conjunction with the
way we organized our ocean variants provided us with a couple of
benefits:

• It abstracted away a lot of the complexities of our ocean as-
sets, reducing the learning curve to working with our oceans.
Updating Maya channels is already a familiar process for our
artists, and so this simplified and unified the workflow for up-
dating the expressions used by the level set composite graphs
and displacement shaders.

• The rig became the single entry point for editing the height-
field expressions, minimizing issues of syncing up the expres-
sion across the various parts of our pipeline.

Figure 4: Our ocean rig was the primary mechanism for updating
the heightfield expressions, giving the various parts of our water
pipeline a centralized data store from which to pull the heightfield
experession.

2.1.2 Interactive Playback

Even though our open seas were defined by heightfields that ex-
tended out to the horizon, our artists typically only needed to pre-
view regions of the ocean that were close to where the action was
taking place. So, we provided them with a GL preview of a cropped
region of the ocean surface in Maya’s viewport. We also added
controls in the rig that allowed the artist to move that proxy surface
around in space, giving them a “preview window” into the ocean at
any point in space.

Figure 5: Not only did our open sea rigs provide real-time play-
back (top), they were render-ready out of the box (bottom). c©2016
Disney.

Our initial implementation of this preview surface was too slow for
interactive use. Our heightfield expressions were complex enough
that we were initially getting between 0.2 and 0.5 fps. To work
around this bottleneck we utilized our in-house rig caching tech-
nology that uses background Maya processes to cache deformed
meshes based on the current state of the rig. Integrating the oceans
into this caching technology posed its own set of challenges. The
main challenge was that this system is designed for caching meshes
that are deformed kinematically. Since the proxy ocean surfaces
were deformed implicitly across time, we had to make the ocean’s
“time” parameter a kinematic control (instead of an implicit one)
so that the proxy surfaces would cache properly. After integrating
this caching technology, we were able to get faster than real-time
playback (24+ fps) after all of the desired playback frames had been
cached. In simple scenes with just the ocean and a boat, we could
easily get 80+ fps.

2.2 Shoreline Rigs

2.2.1 Editing Level Set Composite Graphs

Because our shorelines were pre-simulated against specific beaches
and ocean wave characteristics, it was important that none of the
shape properties defined by the heightfield expression changed. So
for our shoreline rigs, the only control we wanted to give the artists
was over the timing of the water lapping on the shores. With the
custom Maya node we built for our open sea rigs, we already had a
mechanism for updating the time offsets of the heightfield expres-
sion (by having the rig expose the time offset parameter). What
was missing was a way to offset the time offsets of the simulated
shoreline data within the level set composite graphs. So in the same
vein as our custom Maya node for editing heightfield expressions,
we created a custom Maya node for editing our level set compos-
ite graphs. We stored our composite graphs as JSON, so under the
hood, this node was effectively a JSON editor.

2.2.2 Interactive Playback

In shots containing a shoreline, visualizing the water lapping on
the shores was more important than previewing the heightfield that

Figure 6: We used points to visualize our shorelines during inter-
active Maya sessions (top). This representation yielded real-time
playback and was good enough to compose our scenes. Just like
the open sea rigs, our shoreline rigs were render-ready out of the
box (bottom). c©2016 Disney.

defined the rest of the ocean. Because of this, we got rid of the
proxy surface that the open sea rigs used, and replaced it with a
lightweight version of the fully simulated shoreline.

We opted to visualize the shoreline as a relatively sparse set of
points, instead of as a low resolution mesh. The main reason we
chose this representation was because we already had the infras-
tructure built for it. Utilizing our proprietary particle instancer to
display these points in Maya, we were able to give our artists a
complete representation of our shoreline simulations while main-
taining faster than real-time playback. To sync the time offsets of
these proxy points, we already had a custom Maya node to hook up
Maya channels into our particle instancer, and so we just incorpo-
rated that into the rig, as well.

Figure 7: The rigs simplified how different aspects of the ocean
were updated by associating each rig control with multiple systems.
For example, the shoreline rigs had a single channel for adjusting
time offsets, but that value got injected into 3 different parts of the
rig: the heightfield expression, the level set composite graph, and
the instancer.

2.3 Distant Ocean Rigs

Certain moments in “Moana”, such as vast high-altitude vista views
of the ocean, required so much art direction that it no longer made
sense to try to come up with a base heightfield expression from
which to start. For these shots, interaction was not necessary and
so there was no need to share the heightfield expression between
the mesh and the displacement shader. Since it was faster to iter-
ate on displacement for these types of shots, we created a much
simpler rig and dubbed these ocean variants as displacement-only
rigs. For these rigs, we exposed the heightfield expression in the
displacement shader to give artists complete control over it (i.e., it
no longer referenced a string attribute stored on the locator, and was
directly editable in the shader). Although very similar to the way
we did water in our previous films, for consistency, we still repre-
sented the ocean surface as a heightfield in these rigs instead of as
baked out geometry. We just ended up hardcoding the heightfield
expression to yield a zero-height surface (i.e., a flat plane) on which
to apply the displacement.

This variant was mainly used in shots where the ocean was in the
background (i.e., no characters or boats or other objects were inter-
acting with it) or where we were seeing wide ocean vistas. Even
though our open sea and shoreline rig variants got us the majority
of our oceans, it was nice to have this variant in our back pocket
just in case we needed to get something out quickly.

Figure 8: An example of where we used our displacement-only
oceans to give artists the freedom to art direct the wide ocean vis-
tas (this vantage point is from about 330 meters above sea level).
c©2016 Disney.

3 Conclusion

Our ocean rigs successfully gave our artists the necessary control
to create realistic yet art-directable oceans. They streamlined the
process of art directing and finessing the timing of our oceans. With
the ocean rigs resembling our character rigs, they also presented our
artists with a very familiar workflow. This resemblance lowered the
barrier to learning how to use them, allowing artists to iterate faster
and focus on their craft rather than learning a new technology.

Even though we successfully used these rigs throughout “Moana”,
they were not perfect. The following issues give us insight on how
to improve our ocean rigs for future projects:

• Rig Updates: We did our best to predict the needs of pro-
duction, but as our ocean rigs moved down our pipeline, fea-
ture requests would be called out. Adding these feature re-
quests usually required rebuilds of our rigs. Because we em-
ploy a “push” paradigm to distribute assets downstream, these
rig updates could be disruptive to shots that were already far
along down the pipe.

• No T-Pose: The default settings for our character rigs put
them into a T-Pose (i.e., a pose where the character is standing

at the origin with its arms extended out on each side). This is
a clear visual indicator that the character is in its default state.
Unfortunately, we had no such indicators with our ocean rigs,
sometimes making it difficult to know if the correct ocean set-
tings were being used for a given shot.

If there was any discrepancy between our boat animation
and the oceans, it was very difficult to determine which was
wrong: the ocean or the boats. A lot of these discrepancies
arose because the oceans somehow got reverted to their de-
fault rig settings. Sometimes the defaults were close to what
the boats were animated on, but they also varied enough to
notice the problem. Having a visual indication of the default
state would have helped us more easily identify these situa-
tions.

• Syncing Wet Maps: Our shoreline rigs only represented the
water lapping on the beach. The actual beach geometry was
broken out on its own. The way we organize our assets and
make them completely separate from each other posed a chal-
lenge in ensuring that the time offsets of the shoreline rig
matched that of the wet maps of the beaches. We came up
with a post-processing step to shore up these time offsets, but
it was another thing that our artists had to remember to do.

We considered giving the artists a workflow for updating a
“global time offset” through a single interface which would
update the time offsets of any asset listening for it. However,
the required changes to our pipeline were too cost-prohibitive.
Even though we still think this “global time offset workflow”
is a viable solution for future productions, we ended up decid-
ing that we could make do without it for “Moana”.

• Limiting Parameter Exposure: We initially made a best
guess as to which ocean parameters needed to be exposed in
our rigs, and hid the rest of them. We did this in an attempt to
simplify artist interaction with the ocean rigs. Later, we found
out that this just made it more difficult to fine tune certain as-
pects of the oceans as the artists’ need to make more nuanced
adjustments grew. To make these updates, we would bypass
the rig controls and edit the heightfield expression directly by
updating the locator attribute. We had to resort to these brute
force updates when we reached a point in production where
we had to lock our rigs from future updates to avoid the risk
of affecting shots that were already far along in our pipeline.

References

HINSINGER, D., NEYRET, F., AND CANI, M.-P. 2002. Interactive
animation of ocean waves. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
ACM, New York, NY, USA, SCA ’02, 161–166.

HORVATH, C. J. 2015. Empirical directional wave spectra for
computer graphics. In Proceedings of the 2015 Symposium on
Digital Production, ACM, New York, NY, USA, DigiPro ’15,
29–39.

MILLER, E., BREDOW, R., KRAMER, D., HAUSMAN, M., SHIN-
NERS, P., CARLSON, D., AND CLARK, J. 2007. Making waves
for surf’s up. In ACM SIGGRAPH 2007 Sketches, ACM, New
York, NY, USA, SIGGRAPH ’07.

TESSENDORF, J. 2004. Simulating ocean surfaces. In ACM SIG-
GRAPH 2004 Course Notes, ACM, New York, NY, USA, SIG-
GRAPH ’04.

WALT DISNEY ANIMATION STUDIOS. SeExpr. http://www.
disneyanimation.com/technology/seexpr.html.

http://www.disneyanimation.com/technology/seexpr.html
http://www.disneyanimation.com/technology/seexpr.html

