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abstract

Simulating the physical behaviors of deformable objects and fluids has been an impor-
tant topic in computer graphics. While the Lagrangian Finite Element Method (FEM) is
widely used for elasto-plastic solids, it usually requires additional computational compo-
nents in the case of large deformation, mesh distortion, fracture, self-collision and cou-
pling between materials. Often, special solvers and strategies need to be developed for
a particular problem. Recently, the hybrid Eulerian/Lagrangian Material Point Method
(MPM) was introduced to the graphics community. It uses a continuum description of
the governing equations and utilizes user-controllable elasto-plastic constitutive models.
The hybrid nature of MPM allows using a regular Cartesian grid to automate treatment
of self-collision and fracture. Like other particle methods such as Smoothed Particle
Hydrodynamics (SPH), topology change is easy due to the lack of explicit connectivity
between Lagrangian particles. Furthermore, MPM allows a grid-based implicit integra-
tion scheme that has conditioning independent of the number of Lagrangian particles.
MPM also provides a unified particle simulation framework similar to Position Based
Dynamics (PBD) for easy coupling of different materials. The power of MPM has been
demonstrated in a number of recent papers for simulating various materials including
elastic objects, snow, lava, sand and viscoelastic fluids. It is also highly integrated into the
production framework of Walt Disney Animation Studios and has been used in featured
animations including Frozen, Big Hero 6 and Zootopia.
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2 syllabus

2.1 Intended Audience

These notes are intended for industry professionals and academic researchers interested
in recent advances in the Material Point Method for simulating various materials for
computer animation and visual effects.

2.2 Prerequisites

This course requires minimal concepts of continuum mechanics. Familiarity with mul-
tivariable calculus, linear algebra and common numerical algorithms is assumed. No
experience of MPM is required. Some previous knowledge and experience with the
Finite Element Method (FEM) and continuum mechanics would benefit.

2.3 Level of Difficulty

Easy/Intermediate.

2.4 Tentative Schedule

1. Introduction and Welcome (All speakers) (5 min)

• Introduction of Speakers

• Course overview

• MPM introduction: advantages and limitations

• Research demos, Disney production clips

2. MPM in Disney (Alexey Stomakhin, Andrew Selle) (35 min)

3. Continuum Mechanics Concepts (Joseph Teran) (15 min)

• Continuum description of material motion

• Kinematics, deformation gradient, strain

• Stress and hyperelasticity

• Governing equations, conservation of mass/momentum

4. MPM Algorithm (Explicit integration) (Chenfanfu Jiang) (15 min)

• Particle-Grid transfers
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• Deformation gradient update

• Force computations

• Symplectic Euler time integration

• The full MPM algorithm

5. MPM Algorithm (Implicit integration) (Craig Schroeder) (15 min)

• Force derivative computations

• Backward Euler time integration

• Force linearization

• Newton’s method for MPM

6. Conclusion (Joseph Teran) (5 min)

• Difficulties and workarounds

• Open problems, interesting research directions

• Conclusion, Q&A
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3 introduction

Simulating natural phenomena for virtual worlds and characters is an important appli-
cation that remains extremely challenging. An artist’s need to manipulate and compre-
hend physical simulations imposes a significant constraint, all but requiring simulation
methods to involve Lagrangian particles. In addition, the need for computational ef-
ficiency, topology change and numerical stability has led engineers toward hybrid La-
grangian/Eulerian methods. In this course, we focus on the Material Point Method
(MPM), which rises as the generalization of Particle In Cell (PIC) and Fluid Implicit Par-
ticle Method (FLIP) to solid mechanics [Sulsky et al., 1995]. MPM methods combine
Lagrangian material particles (points) with Eulerian Cartesian grids. Notably, there is no
inherent need for Lagrangian mesh connectivity.

Many researchers in graphics have experimented with hybrid grid and particle methods.
While FLIP has been known in graphics community as a useful liquid simulation method
for a while [Zhu and Bridson, 2005; Bridson, 2008; Ando and Tsuruno, 2011], MPM is only
introduced and studied recently.

MPM has been shown to be a very effective hybrid particle/grid method for simulating
various solid materials in computer graphics. Stomakhin et al. [2013] and Disney’s Frozen
use MPM to simulate snow. Hegemann et al. [2013] uses impulses derived from MPM to
resolve colliding embedded deformable object pieces. Stomakhin et al. [2014] augments
MPM for simulating incompressible materials and melting/freezing. Ram et al. [2015]
and Yue et al. [2015] show that MPM is also suitable for complex fluids. Gast et al. [2015]
presents an optimization based integrator to accelerate the nonlinear MPM solver. Jiang
et al. [2015]; Jiang [2015]; Jiang et al. [2016] propose a stable and angular momentum
conserving scheme to improve the particle/grid transfers in MPM. Klar et al. [2016] and
Daviet and Bertails-Descoubes [2016] use MPM to discretize the engineering favored
Drucker-Prager elastoplastity to simulate sand dynamics.

As with PIC/FLIP, MPM implicitly handles self-collision and fracture with the use of
the background Eulerian grid. As a hybrid Lagrangian/Eulerian approach, MPM has
the following advantages when compared with traditional Lagrangian methods (such as
FEM solids) and Eulerian methods (such as grid-based fluids):

• Just like Lagrangian FEM, MPM can be derived from the weak form of conservation
of momentum, allowing for physically accurate discretization of physical laws.
• Boundary conditions, solid wall collisions and external forces can be easily applied

on the grid and particles.
• Automatic self collision/contact due to the fact that particle movements are inter-

polated from undistortable nodal movement on a grid.
• Automatic splitting and merging behaviors because of particle based material rep-

resentation. This is remarkably useful for fluids and granular materials.
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• Automatic multi-material and multiphase coupling can be easily done solely by
giving particles different material properties or constitutive models.
• MPM can also be used to simulate mesh-based Lagrangian forces without loosing

its advantages. (See Section 12.2.) This provides the opportunity of coupling point
based objects and mesh based objects with a single solve on the grid that handles
collisions automatically.

More rigorously speaking, MPM is a Lagrangian method, but with an Eulerian grid
used for computing derivatives. This alleviates the need for a Lagrangian mesh (for
derivative computation) that would get tangled when the material is highly deformed
from its original configuration. This lets you simulate a wider class of materials than
with a purely Lagrangian method. The Eulerian aspects allow for natural treatment of
topological changes and collisions (self and with external objects). There is a sacrifice of
some accuracy in doing this though and materials like e.g. hyperelasticity are not going
to be simulated as effectively. On the other hand, you get self collisions and topology
changes for free.

4 mpm in production

MPM is adopted in Walt Disney Animation Studios for simulating various materials
including most of the dynamic snow in Frozen. It is also highly integrated into the
production framework of Big Hero 6 and Zootopia.

5 kinematics theory

The contents in this section mostly follow [Bonet and Wood, 2008]. We summarize the
important concepts that are helpful for understanding the essence of MPM.

First and foremost, MPM particles are not individual particles, molecules, atoms or little
spheres as one may naturally think when seeing a “particle” method. Each MPM par-
ticle actually represents a continuous piece of material, or really a subset of the whole
simulated material domain. For those familiar with FEM style weak forms of equations,
material points can be thought of as quadrature points for the discretization of spatial
stress derivatives (we will talk about the discretization in Section 9).

Such a view is very common in computational mechanics. When we talk about contin-
uum bodies or continuum mechanics, we have adopted the continuum assumption. This
means the studied material (either solid, liquid or gas) is treated as continuous pieces of
matter. Such a view is very practical in engineering and graphics applications (as well
as in everyday life) where it is really not necessary to deal with the microscopic inter-
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actions between molecules and atoms. Note that a continuum assumption can be made
for almost all solids and fluids that are extensively simulated for graphics, including de-
formable (elastic and plastic) objects, muscle, flesh, cloth, hair, liquids, smoke, gas and
granular materials (sand, snow, mud, soil etc.). A continuum body defines quantities
such as density, velocity, and force as continuous functions of position. Equations of
motion are solved in the spatial domain, and evolved in time to simulate the behaviors
of the simulated materials.

5.1 Continuum Motion

Kinematics refers to the study of motion occurred in continuum materials. The main
focus is the change of shape, or the deformation, either locally or globally in different
coordinate systems of interest. Describing the motion qualitatively and quantitatively is
very essential for deriving governing equations of dynamics and mechanical responses.
Luckily in most cases, we can describe kinematics without introducing the meaning of
force, stress or even mass.

In continuum mechanics, the deformation is usually represented with the material (or
undeformed) space X, the world (or deformed) space x and a deformation map φ(X, t).
You can simply treat X as the “initial position” and x as the “current position” for any
point in the simulated material. In particular, at time t = 0, X and x have the same value.

Here is a more detailed definition. We consider the motion of material to be determined
by a mapping φ(·, t) : Ω0 → Ωt for Ω0,Ωt ⊂ Rd where d = 2 or 3 is the dimension of the
simulated problem (or domain). The mapping φ is sometimes called the flow map or the
deformation map. Points in the set Ω0 are referred to as material points and are denoted
as X. Points in Ωt represent the location of material points at time t. They are referred
to as x. In other words, φ describes the motion of each material point X ∈ Ω0 over time

x = x(X, t) = φ(X, t). (1)

For example, if our object is moving with a constant speed v along direction n, then we
have

x = X+ tvn. (2)

If an object went through some rigid motion after time t (compared to time 0), we will
have

x = RX+b, (3)

where R is a rotation matrix, b is some translation. R and b will probably be some
function with respect to time t and initial position X, depending on the actual motion.
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This mapping can be used to quantify the relevant continuum based physics. For exam-
ple, the velocity of a given material point X at time t is

V(X, t) =
∂φ

∂t
(X, t) (4)

also the acceleration is

A(X, t) =
∂2φ

∂t2
(X, t) =

∂V

∂t
(X, t). (5)

I.e. V(·, t) : Ω0 → Rd and A(·, t) : Ω0 → Rd.

The velocity V and acceleration A defined above are based on the “Lagrangian view”,
where they are functions of the material configuration X and time t. Physically, this
means we are measuring them on a fixed particle. This particle has its mass and occupies
some volume since the beginning. This is an important concept, because soon we will
encounter the “Eulerian view”, where we are sitting at a fixed position in the space
and measuring the velocity of whichever particle that is passing by that position. For
example, the flow velocity in a grid based fluid simulation is a typical Eulerian viewed
quantity. For solid simulation and continuum mechanics, it is often more natural (but
not necessary) to start from the Lagrangian view for deriving stuff.

5.2 Deformation

Now we have X and x being material coordinates and world coordinates, and they belong
to domain Ω0 and Ωt respectively. For any point X in Ω0, we also have Φ to map it to
Ωt for a given time t via x = Φ(X, t).

The Jacobian of the deformation map φ is useful for a number of reasons described below.
E.g. the physics of elasticity is naturally described in terms of this Jacobian. It is standard
notation to use F to refer to the Jacobian of the deformation mapping

F(X, t) =
∂φ

∂X
(X, t) =

∂x

∂X
(X, t). (6)

F is often simply called the deformation gradient. Discretely it is often a small 2 × 2
or 3× 3 matrix. One special case is for a cloth/thin shell in 3D, F is 3× 2 because the
material space is really just 2D. It can be thought of as F(·, t) : Ω0 → Rd×d. In other
words, for every material point X, F(X, t) is the Rd×d matrix describing the deformation
Jacobian of the material at time t. We can also use the index notation

Fij =
∂φi
∂Xj

=
∂xi
∂Xj

, i, j = 1, . . . ,d. (7)

Now we can compute the deformation gradient of the deformation map in Equation
2. The result is the identity matrix. For the one in Equation 3 we get F = R. In both
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Figure 1: Deformation gradient.

these cases, we know the object does not really deform because all they did are rigid
transformations. Such deformation gradients should not result in any internal forces in
the material unless artistic effects are desired.

Intuitively, the deformation gradient represents how deformed a material is locally. For
example, let x01 and x02 be two nearby points embedded in the material (see Figure 1) at
the beginning of the simulation, and let x1 and x2 be the same two points in the current
configuration. Then (x2 − x1) = F(x

0
2 − x

0
1).

The determinant of F (commonly denoted with J) is also often useful because it charac-
terizes infinitesimal volume change. It is commonly denoted with J = det (F). J is the
ratio of the infinitesimal volume of material in configuration Ωt to the original volume
in Ω0. As an example, it is easy to see for rigid motions (rotations and translations), F
is a rotation matrix and J = 1. Note that identity matrix is also a rotation matrix. J > 1
means volume increase and J < 1 means decrease.

J = 0 means the volume becomes zero. In the real world, this will never happen. How-
ever, numerically it is possible to achieve such an F. In 3D, that suggests the material
is so compressed that it becomes a plane or a line or a single volumeless point. J < 0

means the material is inverted. Consider a triangle in 2D, J < 0 means one vertex passes
through its opposing edge, and the area of this triangle becomes negative. Invertible
elasticity [Irving et al., 2004; Stomakhin et al., 2012] is one of the popular methods for
resolving these cases. The model we will talk about in Section 6 for snow will be fine
with these degenerate cases due to its nice numerical properties.

5.3 Push Forward and Pull Back

So far we have assumed quantities are in terms of (X, t), this is called the Lagrangian
view. The mapping φ is assumed to be bijective. And since we will assume it is smooth,
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this means that the sets Ω0 and Ωt are homeomorphic/diffeomorphic under φ. This is
associated with the assumption that no two different particles of material ever occupy the
same space at the same time. This means that ∀x ∈ Ωt, ∃!X ∈ Ω0 such that φ(X, t) = x.
In other words, there exist an inverse mapping φ−1(·, t) : Ωt → Ω0. This means that
any function over one set can naturally be thought of as a function over the other set
by means of change of variables. We denote this interchange of independent variable
as either push forward (taking a function defined over Ω0 and defining a counterpart
over Ωt) or vice versa (pull back). For example, given G : Ω0 → R the push forward
g(·, t) : Ωt → R is defined as g(x, t) = G(φ−1(x, t)). Similarly, the pull back of g is
G(X) = g(φ(X, t), t) which can be seen to be exactly G(X) by definition of the inverse
mapping.

The push forward of a function is sometimes referred to as Eulerian (a function of x)
and the pull back function is sometimes referred to as Lagrangian (a function of X).
As previously defined in Equation 4 and 5, the velocity and acceleration functions are
Lagrangian. Let’s rewrite them here:

V(X, t) =
∂φ

∂t
(X, t) (8)

A(X, t) =
∂2φ

∂t2
(X, t) =

∂V

∂t
(X, t). (9)

It is also useful to define Eulerian counterparts. That is, using push forward,

v(x, t) = V(φ−1(x, t), t), (10)

a(x, t) = A(φ−1(x, t), t). (11)

With this, we can also see that the pull back formula are

V(X, t) = v(φ(X, t), t), (12)
A(X, t) = a(φ(X, t), t). (13)

With this notion of a and v we can see that (using chain rule)

A(X, t) =
∂

∂t
V(X, t) =

∂v

∂t
(φ(X, t), t) +

∂v

∂x
(φ(X, t), t)

∂φ

∂t
(X, t). (14)

Using index notation, this can be written as

Ai(X, t) =
∂

∂t
Vi(X, t) =

∂vi
∂t

(φ(X, t), t) +
∂vi
∂xj

(φ(X, t), t)
∂φj

∂t
(X, t). (15)

where summation is implied on the repeated index j.

Combining Equation 8 and 10, we have

vj(x, t) =
∂φj

∂t
(φ−1(x, t), t). (16)
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Combining Equation 11 and 15, we have

ai(x, t) = Ai(φ−1(x, t), t) =
∂vi
∂t

(x, t) +
∂vi
∂xj

(x, t)vj(x, t) (17)

where we used x = φ(φ−1(x, t), t) (by definition).

We thus get a seemingly non-intuitive result:

ai(x, t) 6= ∂vi
∂t

(x, t). (18)

5.4 Material Derivative

Although the relationship between the Eulerian a and v is not simply via partial differ-
entiation with respect to time, the relationship is a common one and it is often called the
material derivative. The notation

D

Dt
vi(x, t) =

∂vi
∂t

(x, t) +
∂vi
∂xj

(x, t)vj(x, t) (19)

is often introduced so that
a =

D

Dt
v. (20)

For a general Eulerian function f(·, t) : Ωt → R, we use this same notation to mean

D

Dt
f(x, t) =

∂f

∂t
(x, t) +

∂f

∂xj
(x, t)vj(x, t). (21)

Note that D
Dtf(x, t) is the push forward of ∂

∂tF where F is a Lagrangian function with
F(·, t) : Ω0 → R. F is the pull back of f. This rule of pushing forward ∂

∂tF(X, t) to D
Dtf(x, t)

is very useful, and should always be kept in mind.

The deformation gradient is usually thought of as Lagrangian. That is, most of the time
when this comes up in the physics of a material, the Lagrangian view is the dominant one.
There is however a useful evolution of the Eulerian (push forward) of F(·, t) : Ω0 → Rd×d.
Let f(·, t) : Ωt → Rd×d be the push forward of F, then

D

Dt
f =

∂v

∂x
f or

D

Dt
fij =

∂vi
∂xk

fkj (22)

with summation implied on the repeated index k. We can see this because

∂

∂t
Fij(X, t) =

∂

∂t

∂φi
∂Xj

(X, t) =
∂Vi
∂Xj

(X, t) =
∂vi
∂xk

(φ(X, t), t)
∂φk
∂Xj

(X, t), (23)
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where the last equality comes from differentiating Equation 12. In some literature (in-
cluding [Bonet and Wood, 2008] and [Klar et al., 2016]), Equation 22 is written using
symbol F instead of f as

Ḟ = (∇v)F or
DF

Dt
= (∇v)F, (24)

while the formula Ḟ = ∂
∂X

(
∂φ
∂t

)
also appears. When written in such ways, F and f are

undistinguished and Ḟ is used for both time derivatives in the two spaces. It is fine to do
so as long as F = F(X, t) or F = F(x, t) is clearly specified in the context. Otherwise, we
prefer to keep using F to denote the Lagrangian one, and f for the Eulerian one to avoid
confusion.

Equation 23 will play an important role in deriving the discretized F update on each
MPM particle (Section 9.4).

5.5 Volume and Area Change

Assume there is a tiny volume dV at the material space, what is the corresponding value
of dv in the world space? Consider dV being defined over the standard basis vectors
e1,e2,e3 with dV = dL1e1 · (dL2e2 × dL3e3), where dLi are tiny numbers, dLi = dLiei.
Then we have

dV = dL1dL2dL3. (25)

The corresponding deformed vectors in the world space are

dli = FdLi. (26)

It can be shown that dl1dl2dl3 = JdL1dL2dL3 or dv = JdV where J = det(F).

Given this property, for any function G(X) or g(x, t), it is very common to use the push
forward/pull back when changing variables for integrals defined over subsets of either
Ω0 or Ωt. That is ∫

Bt
g(x)dx =

∫
B0
G(X)J(X, t)dX, (27)

where Bt is an arbitrary subset of Ωt, B0 is the pre-image of Bt under φ(·, t), G is the pull
back of g and J(X, t) is the deformation gradient determinant.

Similar analysis can be done for areas. Consider an arbitrary tiny area dS in Ω0, denote
the corresponding area in Ωt with ds. Assuming their normals are N and n respectively,

dS = (dS)N, (28)
ds = (ds)n. (29)
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Consider another tiny vector dL (with corresponding deformed version dl) that deter-
mines a tiny volume when combined with dS (ds), we have

dV = dS · dL, (30)
dv = ds · dl. (31)

Combining this with the previous result dv = JdV , we get

JdS · dL = ds · (FdL), (32)

where we have used dl = FdL. Equation 32 needs to be true for any dL. That results in
the relationship

ds = F−T JdS, (33)

or
nds = F−T JNdS. (34)

We can then use this relation ship to write the surface integrals as∫
∂Bt
h(x, t) ·n(x)ds(x) =

∫
∂B0
H(X) · F−T (X, t)N(X)J(X, t)dS(X) (35)

where H : Ω0 → Rd is the pull back of h : Ωt → Rd, n(x) is the unit outward normal of
∂Bt at x and N(X) is the unit outward normal of ∂B0 at X. These relationships are very
useful when deriving the equations of motion.

6 hyperelasticity

It is more natural to introduce the physical meaning of stress when deriving the gov-
erning equations (conservation of momentum) in Section 7. For now we simply in-
troduce the fact that stress is related to strain (or deformation gradient in our case)
through some “constitutive relationship”. The stress is a field that exists in the whole
domain. There are multiple stress definitions available. For example, the Cauchy stress
is σ(·, t) : Ωt → Rd×d. Discretely stress is a small tensor (matrix) at each evaluated point.

A constitutive model relating the state (such as deformation gradient F) to the stress is
needed for governing the material responses under deformations. For perfectly hyper-
elastic materials the constitutive relation is defined through the potential energy, which
increases with non-rigid deformation from the initial state.

In this section we focus on elastic materials as well as an inexact but practically easy-to-
use plastic model. The models described below have been successfully used for elastic
objects, sand, snow, lava and many other materials in the MPM publications and movies.
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6.1 First Piola-Kirchoff Stress

For traditional solids, we prefer to express strain stress relationship using deformation
gradient and first Piola-Kirchoff stress because they are more naturally expressed in the
material space. Hyperelastic materials are those elastic solids whose first Piola-Kirchoff
stress P can be derived from an strain energy density function Ψ(F) via

P =
∂Ψ

∂F
. (36)

With index notation, this means

Pij =
∂Ψ

∂Fij
. (37)

ψ(F) is the elastic energy density function (a scalar function) designed to penalize non-
rigid F. P is discretely a small matrix with the same dimensions as F.

Note that it is easy to relate P to the Cauchy stress σ which is sometimes more common
in the engineering literature via

σ =
1

J
PFT =

1

det(F)
∂ψ

∂F
FT . (38)

The material behavior is defined via the interaction of φ and the stress σ or P. For
hyperelastic materials, the stress is a function of the change in shape, as expressed via
the deformation gradient. Note that the motion of the material is rigid if

φ(X, t) = R(t)X+ t(t) (39)

where RTR = I, det(R) = 1 and t : [0,∞) → Rd. I.e. R is the rotation and t is the
translation. Note that in this case, F = R. Hyperelastic materials penalize deformation
via stress that arises from an energy that penalizes deviation of F from orthogonal. This
can be written as

P =
∂Ψ

∂F
, Ψ(F) = Ψ̃(FTF). (40)

In other words, the energy does not change (and has a minimum) if F is orthogonal.
FTF is often denoted with C (right Cauchy-Green tensor). If the material is isotropic
(meaning that response to deformation is material direction independent), then we can
further simplify the energy by writing it as a function of the invariants of C:

Ψ = Ψ̃(I1, I2, I3) (41)

where Ii are the coefficients of the characteristic polynomial of FTF (often called the
isotropic invariants) as

I1 = tr(C), (42)
I2 = tr(CC), (43)

I3 = det(C) = J2. (44)
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In graphics, it has been convenient to further write this as

Ψ(F) = Ψ̂(Σ(F)) (45)

where F = UΣVT is the graphics/mechanics favored “Polar SVD” [Irving et al., 2004;
McAdams et al., 2011; Gast et al., 2016] (where both [McAdams et al., 2011] and [Gast
et al., 2016] release open source code for rapidly computing it). It is called “Polar SVD”
for historical reasons. Mainly, U and V are rotations, and the Polar decomposition F =

RS can be reconstructed via R = UVT and S = VΣVT , where R is the closest rotation to
F [Gast et al., 2016] and S is symmetric.

The isotropic invariants can be written in terms of the singular values so this is always
possible. This construction of the constitutive response to deformation can be done intu-
itively in terms of Σ(F), however it does require differentiating the singular values as a
function of F to get the stress (and stress derivatives) and this requires careful derivation.

6.2 Neo-Hookean

Neo-Hookean is one of the most common nonlinear hyperelastic models for predicting
large deformations of elastic materials. The energy density function for this model is

Ψ(F) =
µ

2

(
tr(FTF) − d

)
− µ log(J) +

λ

2
log2(J), (46)

where d = 2 or 3 denotes the problem dimension, µ and λ are related to Young’s modulus
E and Poisson’s ratio ν via

µ =
E

2(1+ ν)
, λ =

Eν

(1+ ν)(1− 2ν)
. (47)

It is easy to see that when F is a rotation, Ψ(F) = 0. For a non-inverted F (meaning
J > 0), Ψ(F) > 0. The energy density function is adequate to describe a hyperelastic
solid. For force computations, Equation 36 is needed to provide P as a function of F. For
Neo-Hookean, the result is

P = µ(F− F−T ) + λ log(J)F−T . (48)

Note that ∂P
∂F is further needed for implicit integration. We provide in Section 6.4 a

practical way to do so.

6.3 Fixed Corotated Constitutive Model

Another simple and widely used model that is defined from the Singular Value Decom-
position (SVD) is the so called fixed corotated model. This is called “fixed" because it is a
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small modification to a commonly used model called corotated linear elasticity common
in the computer graphics literature. Assuming the polar SVD F = UΣVT , the energy for
fixed corotated model is

Ψ(F) = Ψ̂(Σ(F)) = µ

d∑
i=1

(σi − 1)
2 +

λ

2
(J− 1)2 (49)

where of course J =
∏d
i=1 σi. Expanding the µ term in the formula we have

µ

d∑
i=1

(σi − 1)
2 = µ

(
d∑
i=1

σ2i − 2

d∑
i=1

σi + d

)
. (50)

It can be shown that

∂

∂F

d∑
i=1

σ2i = 2F and
∂

∂F

d∑
i=1

σi = R (51)

where F = RS is the polar decomposition of F (R a rotation matrix and S symmetric).
This can of course be defined from the SVD of F as F = UVTVΣVT . I.e. R = UVT and
S = VΣVT . Combining all of this, we have

P(F) =
∂ψ

∂F
(F) = 2µ (F−R) + λ(J− 1)JF−T . (52)

The second derivatives require a bit more care but can be computed relatively easily.

We first do it by computing differentials (which will results in δP). This will be useful
for a matrix free implementation of the implicit solver.

∂2Ψ

∂F∂F
: δF = δ

(
∂Ψ

∂F

)
(53)

= δ(2µ(F−R) + λ(J− 1)JF−T ) (54)
= 2µδF− 2µδR+ λJF−TδJ+ λ(J− 1)δ(JF−T ) (55)
= 2µδF− 2µδR+ λJF−T (JF−T : δF) + λ(J− 1)δ(JF−T ) (56)

Since JF−T is a matrix whose entries are polynomials in the entries of F, δ(JF−T ) =
∂
∂F(JF

−T ) : δF can readily be computed directly. That leaves the task of computing δR.

δF = δRS+RδS (57)
RTδF = (RTδR)S+ δS (58)

RTδF− δFTR = (RTδR)S+S(RTδR) (59)

Here we have taken advantage of the symmetry of δS and the skew symmetry of RTδR.
There are three independent components of RTδR, which we can solve for directly. The
equation is linear in these components, so RTδR can be computed by solving a 3 × 3
system. Finally, δR = R(RTδR).
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6.4 A Practical Differentiation Strategy for Isotropic Elasticity

Here we provide a practical way (originated from [Stomakhin et al., 2012]) to compute P
and ∂P

∂F (either the tensor or the differential δP) for any general isotropic elastic material.
This method will utilize a symbolic software package. We will discuss the Mathematica
implementation. A Maple or any other version is straightforward to produce following
the same logic. For a more thorough discussion on implementing derivative computa-
tions that happen a lot in computer graphics applications, we refer to [Schroeder, 2016].

It is worth noting that this strategy can be used for computing other derivatives in diag-
onal space that looks similar to ∂P

∂F . For example in some models, the Kirchoff stress τ
(instead of first Piola-Kirchoff stress P) is used:

τ = Uτ̂UT , (60)

where τ̂ is a diagonal stress measure with each entry being a function of Σ. To compute
∂τ
∂F , almost exactly the same method discussed below for computing ∂P

∂F can be used.

6.4.1 Computing P

Let’s start with P. For an isotropic material, stress can be computed as

F = UΣVT , (61)

Ψ(F) = Ψ̂(Σ), (62)

P = UP̂VT . (63)

Here, P̂ is diagonal with entries ∂Ψ̂
∂σi

.

Here is the proof for P in diagonal space (Equation 63): First, we want to show P(RF) =

RP(F) for any rotation R. Consider any model (doesn’t even need to be isotropic), rota-
tion after deformation shouldn’t change the energy. This means Ψ(F) = Ψ(RF). Take the
differentials to this equation, we get

δΨ =
∂Ψ

∂F
(F) : δF =

∂Ψ

∂F
(RF) : δ(RF)

(P(F)) : (δF) = (P(RF)) : δ(RF)

(P(F)) : (δF) = (P(RF))ijRikδFkj

(P(F)) : (δF) = (RTP(RF)) : δF

P(F) = RTP(RF)

RP(F) = P(RF)

Similar, if we assume an isotropic material, we can use Ψ(FR) = Ψ(F) to prove P(FR) =
P(F)R for any rotation R. Using these two qualities for P, we have

P(F) = P(UΣVT ) = UP(Σ)VT = UP̂VT . (64)
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6.4.2 Computing ∂P/∂F or δP

The idea is similar to the one for P. Take any two rotations R and Q, use the result for P,
we have

P(F) = P(RRTFQQT ) = RP(RTFQ)QT . (65)

Call K = RTFQ, we have
P(F) = RP(K)QT (66)

Now take the differential (and keep in mind that R and Q should be treat as constants):

δP = R

[
∂P

∂F
(K) : δ(K)

]
QT (67)

= R

[
∂P

∂F
(K) : (RTδFQ)

]
QT . (68)

Since R and Q are freely chosen, we choose R = U and Q = V, then K = Σ. The formula
then becomes

δP = U

[
∂P

∂F
(Σ) : (UTδFV)

]
VT . (69)

This gives us δP. For the tensor ∂P/∂F, we adopt the index notation:

(δP)ij = Uik

(
∂P

∂F
(Σ)

)
klmn

UrmδFrsVsnVjl (70)

(δP)ij =

(
∂P

∂F
(F)

)
ijrs

δFrs (71)

These two equations need to hold for any δF, revealing(
∂P

∂F
(F)

)
ijrs

=

(
∂P

∂F
(Σ)

)
klmn

UikUrmVsnVjl (72)

So the remaining problem is computing ∂P
∂F (Σ). We show how to do it in 3D.

First, we need to use Rodrigues’ rotation formula. It says any rotation matrix can be
written in terms of a unit vector k and an rotation angle θ:

R = I+ sin(θ)K+ (1− cos(θ))K2, (73)

where K is the skew-symmetric cross-product matrix of k. This means every rotation ma-
trix has only 3 degree of freedoms r1, r2, r3, then k = r

|r|
, θ = |r|. So, we can parametrize

rotation matrix U and V with 3 numbers for each.

Now we have the following code for defining F in terms of s1, s2, s3,u1,u2,u3, v1, v2, v3,
where U and V are defined by ui and vi with Rodrigues’ rotation formula, si are the
singular values from Σ.
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1 id=I d e n t i t y M a t r i x [ 3 ] ;
2 var ={ s1 , s2 , s3 , u1 , u2 , u3 , v1 , v2 , v3 } ;
3 Sigma=DiagonalMatrix [ { s1 , s2 , s3 } ] ;
4 cp [ k1_ , k2_ , k3_ ]={{0 , −k3 , k2 } , { k3 ,0 ,−k1 } , { −k2 , k1 , 0 } } ;
5 vV={v1 , v2 , v3 } ;
6 vU={u1 , u2 , u3 } ;
7 nv=Sqrt [ Dot [vV , vV ] ] ;
8 nu=Sqrt [ Dot [vU, vU ] ] ;
9 UU=cp [ u1 , u2 , u3 ]/nu ;

10 VV=cp [ v1 , v2 , v3 ]/nv ;
11 U=id+Sin [ nu ]∗UU+(1−Cos [ nu ] ) ∗UU.UU;
12 V=id+Sin [ nv ]∗VV+(1−Cos [ nv ] ) ∗VV.VV;
13 F=U. Sigma . Transpose [V ] ;

where cp is a function for generating the cross-product matrix (corresponding to com-
puting K in Equation 73).

From now on, we write the 3× 3× 3× 3 tensor ∂P∂F (Σ) and any other such tensors to 9× 9
matrices. That means each 3× 3 matrix is now a size-9 vector. It is easy to see the old
∂Pij
∂Fkl

is now
∂P3(i−1)+j
∂F3(k−1)+l

. We further call vector S = {s1, s2, s3,u1,u2,u3, v1, v2, v3} being the
parametrization of F. Then we can apply the chain rule

∂P

∂F
(Σ) =

∂P

∂S
(Σ)

∂S

∂F
(Σ) (74)

Here are the Mathematica code for computing them. Note that we achieve F = Σ by
taking the limit {u1,u2,u3, v1, v2, v3} = +ε, which correspond to nearly zero rotations.

1 dFdS=D[ F l a t t e n [ F ] , { var } ] ;
2 dFdS0=dFdS / . { u1−>e , u2−>e , u3−>e , v1−>e , v2−>e , v3−>e } ;
3 dFdS1=Limit [ dFdS0 , e−>0 , Direc t ion −>−1];
4 dSdF0=Inverse [ dFdS1 ] ;
5 Phat=DiagonalMatrix [ { t1 [ s1 , s2 , s3 ] , t 2 [ s1 , s2 , s3 ] , t 3 [ s1 , s2 , s3 ] } ] ;
6 P=U. Phat . Transpose [V ] ;
7 dPdS=D[ F l a t t e n [ P ] , { var } ] ;
8 dPdS0=dPdS / . { u1−>e , u2−>e , u3−>e , v1−>e , v2−>e , v3−>e } ;
9 dPdS1=Limit [ dPdS0 , e−>0 , Direc t ion −>−1];

10 dPdF=Simpl i fy [ dPdS1 . dSdF0 ] ;

Note ’Direction->-1’ in Mathematica means taking the limit from large values to the
small limit value. The Mathematica computation result will be given in terms of the
singular values and P̂. One can then take the formula for implementing them in the code.
[Stomakhin et al., 2012] gives the result where ∂P/∂F (size 9× 9 matrix) is permuted to
be a block diagonal matrix with diagonal blocks A3×3,B2×212 ,B2×213 ,B2×223 , where

A =

 ψ̂,σ1σ1 ψ̂,σ1σ2 ψ̂,σ1σ3
ψ̂,σ2σ1 ψ̂,σ2σ2 ψ̂,σ2σ3
ψ̂,σ3σ1 ψ̂,σ3σ2 ψ̂,σ3σ3

 (75)



hyperelasticity 24

and

Bij =
1

σ2i − σ
2
j

(
σiψ̂,σi − σjψ̂,σj σjψ̂,σi − σiψ̂,σj
σjψ̂,σi − σiψ̂,σj σiψ̂,σi − σjψ̂,σj

)
. (76)

The division by σ2i − σ
2
j is problematic when two singular values are nearly equal or

when two singular values nearly sum to zero. The latter is possible with a convention
for permitting negative singular values (as in invertible elasticity [Irving et al., 2004;
Stomakhin et al., 2012]).

Expanding Bij in terms of partial fractions yields the useful decomposition

Bij =
1

2

ψ̂,σi − ψ̂,σj

σi − σj

(
1 1

1 1

)
+
1

2

ψ̂,σi + ψ̂,σj

σi + σj

(
1 −1

−1 1

)
. (77)

Note that if ψ̂ is invariant under permutation of the singular values, then ψ̂,σi → ψ̂,σj as
σi → σj. Thus, the first term can normally be computed robustly for an isotropic model
if implemented carefully. The other fraction has deeper implications. This term can be
computed robustly if ψ̂,σi + ψ̂,σj → 0 as σi + σj → 0. This property is unfavorable, as it
means the constitutive model will have difficulty recovering from many inverted configu-
rations. Since we are usually interested in models with robust behavior under inversion,
this term will necessarily be unbounded under some circumstances. We address this by
clamping the magnitude of the denominator to not be smaller than 10−6 before division
to bound the derivatives.

For 2D, a rotation matrix is now simply paremetrized with a single θ where the recon-
struction is

R =

(
cos θ − sin θ
sin θ cos θ

)
.

The 2D version of the whole Mathematica code is

1 id=I d e n t i t y M a t r i x [ 2 ] ;
2 var ={ s1 , s2 , u1 , v1 } ;
3 S=DiagonalMatrix [ { s1 , s2 } ] ;
4 U= { { Cos [ u1 ] ,− Sin [ u1 ] } , { Sin [ u1 ] , Cos [ u1 ] } } ;
5 V= { { Cos [ v1 ] ,− Sin [ v1 ] } , { Sin [ v1 ] , Cos [ v1 ] } } ;
6 F=U. S . Transpose [V ] ;
7 dFdS=D[ F l a t t e n [ F ] , { var } ] ;
8 dFdS0=dFdS / . { u1−>e , v1−>e } ;
9 dFdS1=Limit [ dFdS0 , e−>0 , Direc t ion −>−1];

10 dSdF0=Inverse [ dFdS1 ] ;
11 Phat=DiagonalMatrix [ { t1 [ s1 , s2 ] , t 2 [ s1 , s2 ] } ] ;
12 P=U. Phat . Transpose [V ] ;
13 dPdS=D[ F l a t t e n [ P ] , { var } ] ;
14 dPdS0=dPdS / . { u1−>e , v1−>e } ;
15 dPdS1=Limit [ dPdS0 , e−>0 , Direc t ion −>−1];
16 dPdF=Simpl i fy [ dPdS1 . dSdF0 ] ;
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Figure 2: Multiplicative decomposition of the deformation gradient.

6.5 Snow Plasticity

Snow constitutive behavior depends on a very wide range of complex factors. There are
many different models used depending on the conditions of interest. Much of the dy-
namic behavior can be approximated with a relatively simple elasto-plastic assumption.
We will use a simple large-strain plastic flow model combined with a hardening effect.

We represent plasticity by factoring deformation gradient into elastic and plastic parts as

F = FEFP. (78)

The deformation gradient is a measure of how a material has locally rotated and de-
formed due to its motion. By factoring the deformation gradient in this way, we divide
this deformation history into two pieces. The plastic part, FP, represents the portion of
the material’s history that has been forgotten. If a metal rod is bent into a coiled spring,
the rod forgets that it used to be straight; the coiled spring behaves as though it was al-
ways coiled (see Figure 2). The twisting and bending involved in this operation is stored
in FP. If the spring is compressed slightly, the spring will feel strain (deformation). This
is elastic deformation, which is stored in FE. The spring remembers this deformation. In
response, the material exerts stress to try to restore itself to its coiled shape. In this way,
we see that only FE should be used to compute stress. The full history of the metal rod
consists of being bent into a spring shape (FP) and then being compressed (FE).

The elastic response is only a function of FE. Intuitively, this states that the deformation
in the local transition to FP is permanent. In a sense, Fp comes to represent a new lo-
cal rest state of the material. This transition to permanent deformation is typically in
response to large deformation. A simple example of this would be denting an aluminum
can. Once dented, all elastic response will be to displacement from the dented config-
uration. Most models define the decomposition in response to a stress based condition.
However, for our case it will be more intuitive to think of the constraint as defined on the
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singular values of F itself. This will give us more visual control over the plasticity effect.
Specifically, we will enforce that the singular values σEi of FE are in [1− θc, 1+ θs] for
some small constants θc and θs. This will be done with the following procedure. Given

Fn = FnEF
n
P , (79)

(where the singular values σnEi of FnE satisfy the constraint of lying in [1− θc, 1+ θs]) and
a new Fn+1, we will first assume that all new deformation introduced in the transition
from Fn to Fn+1 was elastic. That is we will first assume that given a new Fn+1, it can be
decomposed as

Fn+1 = F̃n+1E FnP . (80)

In so doing, this defines F̃n+1E as

F̃n+1E = Fn+1 (FnP)
−1 . (81)

In practice it is often more convenient to store FE and FP instead of storing the full F. The
tentative update of F can then be applied to FE directly to give F̃n+1E . The next step is to
enforce the constraint that the singular values σ̃n+1Ei of F̃n+1E satisfy the constraint of lying
in [1− θc, 1+ θs]. That is, we define

σn+1Ei = clamp(σ̃n+1Ei , 1− θc, 1+ θs), i = 1, . . . ,d (82)

Now, assuming the singular value decomposition of F̃n+1E is

F̃n+1E = Un+1E Σ̃EV
n+1
E

T
, (83)

we can define Fn+1E from the clamped singular values Σn+1E as

Fn+1E = Un+1E Σn+1E Vn+1E

T
. (84)

Of course with this definition of Fn+1E we still need to maintain the same decomposition
of F so we would need to determine a new Fn+1P such that

Fn+1 = Fn+1E Fn+1P . (85)

But of course, given that we know Fn+1 and Fn+1E , the new plastic component of the
deformation gradient is

Fn+1P =
(
Fn+1E

)−1
Fn+1. (86)

Snow will tend to get more rigid under compression. This phenomenon is often called
hardening. We use a simple modification to our constitutive model to add this effect.
Specifically, we let the Lame coefficients µ and λ increase under compression and de-
crease under extension. The reduction in material strength under extension facilitates
break-up and fracture of the snow. This is an important property for a wide range of
visual phenomena. We quantify this hardening effect as

µ(FP) = µ0e
ξ(1−JP), λ(FP) = λ0eξ(1−JP) (87)



governing equations 27

where µ0 and λ0 are the Lame parameters as set from the original Young’s modulus and
Poisson ratio. ξ is a hardening parameter that we typically use something between 3 and
10. Also, JP = det (FP). It is also important to include some safeguards to prevent µ and
λ becoming too large. This can be simply done by requiring a numerical clamping bound
on ξ(1− JP).

It can also be seen from the derivation that instead of storing Fp, keeping track of Jp is
enough as long as we know how to get F̃n+1E from the time n quantities. For MPM this is
indeed the case.

This hardening model is designed with the intuition that when snow is stretched, it
becomes softer (to allow fracture). When it is compressed, it becomes stiffer like packing
a snow ball. The rule in Equation 87 is just an empirical formula. Being creative on the
rules will help produce more versatile and artistic material behaviors.

A more rigorously derived plasticity model needs to obey the second law of thermody-
namics as well as enforcing JP = 1 (plasticity deformation should not change the material
volume). We refer to the technical document of [Klar et al., 2016] for a more thorough
discussion on this matter.

7 governing equations

The governing equations of interest are conservation of mass and conservation of mo-
mentum. We’ll list the result below and provide their derivations in Section 7.1 and 7.2.
We further derive the weak form of the force balance in Section 7.3. The weak form is
essential for deriving the final temporal and spatial discretization of the equations in
Section 9. It is recommended to review Section 5 before looking into the derivations.

Letting V(X, t) = ∂Φ(X,t)
∂t =

∂x(X,t)
∂t be the velocity defined over X, the Lagrangian view of

the equations are [Gonzalez and Stuart, 2008]

R(X, t)J(X, t) = R(X, 0) Conservation of mass, (88)

R(X, 0)
∂V

∂t
= ∇X ·P+ R(X, 0)g Conservation of momentum, (89)

where X ∈ Ω0,t > 0. Here R is the Lagrangian mass density which is related to the more
commonly used Eulerian mass density ρ as R(X, t) = ρ(Φ(X, t), t). Note that the mass
conservation can also be written as ∂

∂t (R(X, t)J(X, t)) = 0.

In Eulerian view, the governing equations are

D

Dt
ρ(x, t) + ρ(x, t)∇x · v(x, t) = 0 Conservation of mass, (90)

ρ(x, t)
Dv

Dt
= ∇x ·σ+ ρ(x, t)g Conservation of momentum, (91)
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where v = v(x, t) is the Eulerian velocity, D
Dt =

∂
∂t + v · ∇

x is the material derivative.

As shown in the conservation of momentum, it is more convenient to use the first Piola-
Kirchoff stress P in the Lagrangian view, and the Cauchy stress σ in the Eulerian view.

7.1 Conservation of Mass

Let ρ(x, t) be the Eulerian mass density and let R(X, t) be the Lagrangian counterpart
(pull back), we have the relationship

R(X, t) = ρ(φ(X, t), t) (92)

ρ(x, t) = R(φ−1(x, t), t). (93)

We can think of ρ to be naturally defined over Ωt as

ρ(x, t) = lim
ε→+0

mass(Btε)∫
Btε
dx

(94)

where Btε is the ball of radius ε surrounding an arbitrary x ∈ Ωt. This is arguably
a natural definition since mass(Btε) should be a measurable quantity. Conservation of
mass can be expressed as

mass(Btε) =
∫
Btε

ρ(x, t)dx =
∫
B0ε

R(X, t)JdX =

∫
B0ε

R(X, 0)dX = mass(B0ε) (95)

for all Btε ⊂ Ωt (as before, B0ε is the pre-image of Btε under φ(·, t)). The second equality
comes from using the change of variable result from Section 5.5.

This just says that the mass in Btε (as expressed via an integral of the mass density) should
not change with time. This set is associated with a subset of the material at time t and as
it evolves in the flow, the material will take up more or less space, but there will never
be more or less material in the set. Since Btε is arbitrary, it must be true that

R(X, t)J(X, t) = R(X, 0), ∀X ∈ Ω0, t > 0. (96)

Note that J(X, 0) = 1. Alternatively, mass conservation can be written as

∂

∂t
(R(X, t)J(X, t)) = 0. (97)

To switch to the Eulerian view, we first notice that

∂

∂t
(RJ) =

∂R

∂t
J+ R

∂J

∂t
. (98)

Also,
∂J

∂t
=
∂J

∂Fij

∂Fij

∂t
= JF−1ji

∂Vi
∂Xj

= JF−1ji
∂vi
∂xk

Fkj = Jδik
∂vi
∂xk

= J
∂vi
∂xi

, (99)
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where we have used the determinant differentiation rule

∂J

∂F
= JF−T . (100)

Combining Equation 97, 98 and 99, we get

∂R

∂t
J+ RJ

∂vi
∂xi

= 0. (101)

Pushing forward on both sides result in the Eulerian view of conservation of mass:

D

Dt
ρ(x, t) + ρ(x, t)∇ · v(x, t) = 0, ∀x ∈ Ωt, t > 0. (102)

7.2 Conservation of Momentum

Continuum forces are classified as either body forces (e.g. gravity) or surface forces
(stress-based). Stress-based forces are first defined via a traction field whose existence
we will assume. The force per area (or traction) field t(·,n, t) : Ωt → Rd is defined via
the relation

forceS(Btε) =
∫
∂Btε

t(x,n(x))ds(x) (103)

where forceS(Btε) is the net force on an arbitrary Btε exerted from material on the other
side of ∂Btε on material inside Btε. That is, t(x,n, t) is the force per unit area(d =

3)/length(d = 2) that material in the n+ side of the material at the point x exerts on
material on the n− side. It can be shown that this implies the existence of a stress field
(Cauchy stress) σ(·, t) : Ωt → Rd×d with

t(x,n, t) = σ(x, t)n. (104)

Let v be the Eulerian velocity (with Lagrangian counterpart V). Then conservation of
momentum is expressed as

d

dt

∫
Btε

ρ(x, t)v(x, t)dx =
d

dt

∫
B0ε

R(X, t)V(X, t)JdX =

∫
B0ε

R(X, 0)A(X, t)dX

=

∫
∂Btε

σnds(x) +

∫
Btε

fextdx (105)

for all Btε ⊂ Ωt in the time t configuration of the material. Here we have added the
contribution of external body force (such as gravity) fext to the change of momentum.
fext represents the external body force per unit volume. Therefore the rate of change of
the momentum in Btε is equal to the net force on Btε as expressed via the Cauchy stress
field plus the external force. It can also be shown that σ(x, t) must be symmetric for
conservation of angular momentum [Bonet and Wood, 2008].
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The last equality of Equation 105 can also be written as∫
B0ε

R(X, t)J(x, t)A(X, t)dX =

∫
∂Btε

σnds(x) +

∫
Btε

fext(x, t)dx. (106)

Pushing forward the volume integral on the left side of Equation 106 results in both sides
over Btε:∫

Btε

ρ(x, t)a(x, t)dx =
∫
∂Btε

σnds(x) +

∫
Btε

fextdx =

∫
Btε

∇x · σdx+
∫
Btε

fextdx, (107)

or

ρa = ∇x · σ+ fext, ∀x ∈ Ωt, t > 0. (108)

Alternatively, we can also choose to pull back the right side of Equation 106 using∫
∂Btε

σ(x, t)nds(x) =
∫
∂B0ε

J(X, t)σ(φ(X, t), t)F−T (X, t)Nds(X). (109)

Recall the first Piola Kirchoff stress is related to the Cauchy stress as P = JσF−T , we get∫
∂Btε

σ(x, t)nds(x) =
∫
∂B0ε

P(X, t)Nds(X) =
∫
B0ε

∇x ·P(X, t)dX. (110)

Compare this with Equation 106 we get the Lagrangian form of conservation of momen-
tum: ∫

B0ε

R(X, 0)A(X, t)dX =

∫
B0ε

∇x ·P(X, t)dX+

∫
B0ε

FextJ(X, t)dX (111)

or
R(X, 0)A(X, t) = ∇x ·P(X, t) + Fext(X, t)J(X, t), ∀X ∈ Ω0, t > 0 (112)

where Fext is the pull back of the Eulerian body force per unit volume fext.

7.3 Weak Form

MPM is like the FEM discretization of the stress based forces over the Eulerian grid. It
therefore uses the weak form of force balance. We can think of it as Lagrangian. Let’s
ignore the external force for simplicity. We can start with the conservation of momentum

R(X, 0)A(X, t) = ∇x ·P(X, t),∀X, t, (113)

or
R0Ai = Pij,j, ∀X, t, (114)
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where R0 = R(X, 0). So for an arbitrary function Q(·, t) : Ω0 → Rd, let’s compute the dot
product to Equation 113 and integrate over Ω0 to generate the weak form:∫

Ω0
Qi(X, t)R(X, 0)Ai(X, t)dX =

∫
Ω0
Qi(X, t)Pij,j(X, t)dX (115)

=

∫
Ω0

((
Qi(X, t)Pij(X, t)

)
,j −Qi,j(X, t)Pij(X, t)

)
dX (116)

=

∫
∂Ω0

Qi(X, t)Pij(X, t)Nj(X, t)ds(X)

−

∫
Ω0
Qi,j(X, t)Pij(X, t)dX. (117)

The quantity PijNj would be specified as a boundary condition. If we let T (X, t) be the
boundary force per unit reference area with Ti = PijNj, then we can say that force balance
implies that ∀Q(·, t) : Ω0 → Rd∫

Ω0
Qi(X, t)R(X, 0)Ai(X, t)dX =

∫
∂Ω0

QiTids(X) −

∫
Ω0
Qi,jPijdX . (118)

For MPM, the stress derivatives will be discretized in the current configuration, so we
can push the stress involving integrals to the Eulerian view. Let q be the push forward
of Q with Q(X, t) = q(φ(X, t), t) and q(x, t) = Q(φ−1(x, t), t), we have

Qi,j =
∂Qi
∂Xj

=
∂qi
∂xk

∂xk
∂Xj

= qi,kFkj. (119)

Further more, recall that

σik =
1

J
PijFkj,

and define t to be the external force per unit area in the Eulerian configuration (t is the
push forward of T ), Equation 118 becomes∫

Ωt
qi(x, t)ρ(x, t)ai(x, t)dx =

∫
∂Ωt

qitids(x) −

∫
Ωt
qi,kσikdx , (120)

where we have pushed forward the volume and surface integrals using the rules de-
scribed in Section 5.5. Force balance implies the above holds for an arbitrary q(·, t) :

Ωt → Rd. We call Equation 120 the weak form of force balance in the Eulerian view. The
MPM discretization on the grid will be based on this equation.

8 material particles

Before discretizing the weak form of the force balance (Equation 120), let’s first introduce
the material particles (or material points, Lagrangian particles, etc. ) that represents the
material simulated with MPM.
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Recall that the material point method is Lagrangian in the sense that we track actual
particles of material. That is we keep track of mass (mp), velocity (vp) and position (xp)
for a collection of material particles p. However, all stress based forces are computed on
the Eulerian grid, so we have to transfer the material state to the Eulerian configuration
to incorporate the effects of material forces. Then, we transfer these effects back to the
material particles and move them in the normal Lagrangian way. The Lagrangian nature
makes advection very trivial compared to pure Eulerian methods (such as grid-based
fluid simulation).

Just like any other PIC/FLIP solvers, MPM solves the governing equation on a back-
ground Eulerian grid. The grid acts as a scratch pad. It can be destroyed after each solve
and reinitialized in the beginning of the next time step. In practice, it is easy to just use
a fixed Cartesian grid.

8.1 Eulerian Interpolating Functions

In each time step of MPM, particles transfer their mass and momentum to the grid nodes.
After the grid solve, velocities are transferred back to particles for them to perform the ad-
vection step. Both transfers require interpolation functions. Taking a Finite Element view,
the Eulerian grid is the essential computational mesh while particles act as quadrature
points. Therefore, instead of thinking of the interpolation function as a particle ‘kernel’
as in SPH, it is more natural (but not necessarily) to let the interpolation functions be
defined over grid nodes.

We can denote the interpolation function at grid node i with Ni(x). Note that i is bold
here because it is usually a multi-index for grid nodes. Specifically, i = (i, j) in 2D,
i = (i, j,k) in 3D. When Ni(x) is evaluated at a particle location xp, a shorter notation
Ni(xp) = wip is often used instead. Intuitively, we are associating with each particle
p and grid node i a weight wip which determines how strongly the particle and node
interact. If the particle and grid node are close together, the weight should be large. If
the particle and node are farther apart, the weight should be small.

We use dyadic products of one-dimensional interpolation functions as our grid basis
functions as in [Steffen et al., 2008]

Ni(xp) = N(
1

h
(xp − xi))N(

1

h
(yp − yi))N(

1

h
(zp − zi)), (121)

where i = (i, j,k) is the grid index, xp = (xp,yp, zp) is the evaluation position, h is the
grid spacing, xi = (xi,yi, zi) is the grid node position. For more compact notation, we
will use wip = Ni(xp) and ∇wip = ∇Ni(xp). While writing them like these, one should
keep in mind both Ni and ∇Ni are still functions of arbitrary x. When writing with w, it
means these functions are evaluated at x = xp.

Choosing a kernel N leads to trade offs with respect to smoothness, computational effi-
ciency, and the width of the stencil. We prefer tensor product splines for their compu-
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tational efficiency, as they are relatively inexpensive to compute, differentiate, and store.
The multi-linear kernel typically employed for FLIP fluid solvers is the simplest of these
options, but it is not suitable here. There are two reasons for this (see [Steffen et al.,
2008]). The first is that ∇wip would be discontinuous and produce discontinuous forces.
The second is that∇wip may be far from zero when wip ≈ 0, leading to large forces being
applied to grid nodes with tiny weights. MPM typically requires C1 continuity of the
interpolation function to prevent the so called cell-crossing instability. In practice, either
quadratic B splines or cubic B splines may be used. Quadratic B splines is more compu-
tational efficient and memory saving due to a smaller transfer stencil. Cubic B splines on
the other hand, is more expensive but provides wider coverage, therefore less sensitive
to numerical errors such as numerical fracture when they are not desired artistic effects.
The cubic kernel is defined with

N(x) =


1
2 |x|

3 − |x|2 + 2
3 0 6 |x| < 1

1
6(2− |x|)3 1 6 |x| < 2

0 2 6 |x|

(122)

where h is the grid spacing. The quadratic kernel is also useful:

N(x) =


3
4 − |x|2 0 6 |x| < 1

2

1
2

(
3
2 − |x|

)2 1
2 6 |x| < 3

2

0 3
2 6 |x|

(123)

The quadratic and cubic kernels are shown in Figure 3. Though theoretically unstable,
linear interpolation functions may still work for certain applications in practice. It is

N(x) =

{
1− |x| 0 6 |x| < 1

0 1 6 |x|
(124)

Computing the gradient is done similarly by differentiating the one dimensional func-
tions:

∇Ni(xp) =

 1
hN
′( 1h(xp − xi))N( 1h(yp − yi))N( 1h(zp − zi))

N( 1h(xp − xi))
1
hN
′( 1h(yp − yi))N( 1h(zp − zi))

N( 1h(xp − xi))N( 1h(yp − yi))
1
hN
′( 1h(zp − zi))


where N ′(x) is the derivative of N(x).

8.2 Eulerian/Lagrangian Mass

When representing our material as a finite collection of points, we can assign each point
a subset (B0∆x,p ⊂ Ω0) of the total material. In this way, we can define the mass of that
particle to be

mn
p =

∫
Bt
n
∆x,p

ρ(x, tn)dx. (125)
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N̂(x)

Figure 3: Cubic (blue) and quadratic (red) splines used for computing interpolation weights.

With this convention, we can define the following conservative process for transferring
mass and momentum (and then velocity) to the nodes of the Eulerian grid. Define

mi =
∑
p

mpNi(xp) (126)

as the mass of Eulerian grid node i. With this convention, we have∑
i

mi =
∑
i

∑
p

mpNi(xp) =
∑
p

mp

∑
i

Ni(xp) =
∑
p

mp (127)

by the partition of unity assumption on the Ni.

8.3 Eulerian/Lagrangian Momentum

Similarly, we can transfer particle momentum mpvp as (note that we will eventually use
a different transfer called APIC described in Section 10.1)

(mv)i =
∑
p

mpvpNi(xp) (128)

and we can show that ∑
i

(mv)i =
∑
p

mpvp (129)

by the same partition of unity logic. The Eulerian velocity vi is defined as

vi =
(mv)i
mi

. (130)

Note that in this case, the repeated index does not imply summation.



discretization 35

8.4 Eulerian to Lagrangian Transfer

The transfer from Eulerian variables to Lagrangian variables is similar. However, we
never need to transfer mass from the grid to the particles since Lagrangian particle mass
never changes. Velocity is simply interpolated as

vp =
∑
i

viNi(xp). (131)

It is easily verified that this conserves momentum as∑
p

mpvp =
∑
p

mp

∑
i

viNi(xp) =
∑
i

vi
∑
p

mpNi(xp) =
∑
i

mivi. (132)

9 discretization

9.1 Discrete Time

We will start by assuming we are at time tn. Recall that the weak forms of the force
balance equation (Equation 118 and 120) imply∫

Ω0
QiR0AidX =

∫
∂Ωt

n
qitids(x) −

∫
Ωt
n
qi,kσikdx (133)

for all q(x, tn) (or Q(X, tn)). We start by replacing the Lagrangian acceleration Ai(X, tn)
with 1

∆t

(
Vn+1i − Vni

)
. We can then push the left hand side forward from Ω0 to Ωt

n
to

obtain
1

∆t

∫
Ωt
n
qi(x, tn)ρ(x, tn)

(
vn+1i (x) − vni (x)

)
dx

=

∫
∂Ωt

n
qi(x, tn)ti(x, tn)ds(x) −

∫
Ωt
n
qi,k(x, tn)σik(x, tn)dx. (134)

Note that with this notation vn : Ωt
n → Rd, vn+1 : Ωt

n → Rd (both of them are defined
for x ∈ Ωtn). Therefore vn+1i (x) = Vi(φ

−1(x, tn), tn+1) and vni (x) = Vi(φ
−1(x, tn), tn).

We should keep in mind that all the i and k subscripts in Equation 134 are component
index for dimensions. I.e., i = 1, 2, 3 for 3D and i = 1, 2 for 2D. When we are going
discrete in space, we probably want to use indices like i, j,k to denote a grid node. To
avoid confusion, from now on, we can require Greek letters like α,β,γ to denote the
component index. This results in rewriting Equation 134 as

1

∆t

∫
Ωt
n
qα(x, tn)ρ(x, tn)

(
vn+1α (x) − vnα(x)

)
dx

=

∫
∂Ωt

n
qα(x, tn)tα(x, tn)ds(x) −

∫
Ωt
n
qα,β(x, tn)σαβ(x, tn)dx, (135)
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where α,β = 1, 2, ..,d and d is the problem dimension (2 or 3). Now qiα means the α
component of the vector quantity q that is stored at node i. Also, qα(x, t) means the α
component of the field q(x, t).

9.2 Discrete Space

We can do an FEM style discretization of the spatial terms by replacing qα, vnα and vn+1α

with grid based interpolants as

qα(x, tn) =
∑
i

qiα(t
n)Ni(x), (136)

vnα(x) =
∑
j

vnjαNj(x), (137)

vn+1α (x) =
∑
j

vn+1jα Nj(x) (138)

or
qnα = qniαNi, v

n
α = vnjαNj, v

n+1
α = vn+1jα Nj (139)

for short where summation is implied on the repeated index. Force balance (Equation
135) can then be viewed as

1

∆t

∫
Ωt
n
qniαNi(x)ρ(x, tn)vn+1jα Nj(x)dx−

1

∆t

∫
Ωt
n
qniαNi(x)ρ(x, tn)vnjαNj(x)dx

=

∫
∂Ωt

n
qniαNi(x)tα(x, tn)ds(x) −

∫
Ωt
n
qniαNi,β(x)σαβ(x, tn)dx. (140)

for all qiα. This can also be expressed as

qniαδαβ
mn
ij

∆t
vn+1jβ − qniαδαβ

mn
ij

∆t
vnjβ

=

∫
∂Ωt

n
qniαNitαds(x) −

∫
Ωt
n
qniαNi,βσαβdx. (141)

where

mn
ij =

∫
Ωt
n
Ni(x)ρ(x, tn)Nj(x)dx (142)

defines the mass matrix. We can pull it back to the material space to get

mn
ij =

∫
Ω0
Ni(x(X))R(X, 0)Nj(x(X))dX ≈

∑
p

mpNi(xp)Nj(xp). (143)

It is symmetric positive semi-definite because it can be written as BBT (mij =
∑
p BipBjp)

where Bip =
√
mpNip so that zTMz > 0 for any z. In practice we can not use this
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mass matrix because it may be singular. We’ll see below a “mass lumping” strategy to
approximate the mass matrix with a diagonal and positive definite matrix while keeping
consistent with the particle-grid transfers.

Equation 141 must be true for all choices of qniα. So if we choose them to be

qniα =

{
1, α = α̂ and i = î
0, otherwise

then ∑
j

mîj

∆t

(
vn+1jα̂ − vnjα̂

)
=

∫
∂Ωt

n
Nîtα̂ds(x) −

∫
Ωt
n
Nî,βσα̂βdx. (144)

This can be seen as a discrete force balance equation for the î, α̂ degree of freedom on
the grid. We will next show that it can be used as an explicit update rule for the Eulerian
momentum and that the right hand side can be thought of as the α̂th component of the
force on the îth Eulerian grid node.

As we just mentioned, it is often convenient (though less accurate) to use a mass lumping
simplification. It is done by replacing the rows in mij with the corresponding row sum,
thus making it a diagonal matrix. The row sums (let’s call it m̂i for row i) are

m̂i =
∑
j

∫
Ωt
n
Ni(x)ρ(x, tn)Nj(x)dx =

∫
Ωt
n
Ni(x)ρ(x, tn)

∑
j

Nj(x)dx

=

∫
Ωt
n
Ni(x)ρ(x, tn)(x)dx. (145)

We can also use the following approximation (similarly to what we did in Equation 143)∫
Ωt
n
Ni(x)ρ(x, tn)dx =

∫
Ω0
Ni(x(X))R(X, 0)dX ≈

∑
p

Ni(xp)mp (146)

since mp ≈ V0pR(Xp, 0). In other words m̂i can naturally be approximated as mi.

Rewriting mivni as the momentum (mv)ni , we can summarize the discretization as(
(mv)n+1iα − (mv)niα

)
∆t

=

∫
∂Ωt

n
Ni(x)tα(x, tn)ds(x) −

∫
Ωt
n
Ni,β(x)σαβ(x, tn)dx . (147)

In other words, since the left hand side is the change in momentum, the right hand side
is approximately the force. Here we have assumed that we have an estimate of the stress
σnp ≈ σ(xnp , tn) at each Lagrangian particle xnp , thus∫

Ωt
n
Ni,β(x)σαβ(x, tn)dx ≈

∑
p

σp
n
αβNi,β(x

n
p)V

n
p (148)

where Vnp is the volume of Bt
n

∆x,p, or the volume particle p occupies at time tn.
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9.3 Estimating the Volume

We can estimate Vnp with two ways. First, recall that

mp ≈ R(Xp, 0)V0p ≈ ρ(xnp , tn)Vnp . (149)

We can then approximate ρ(xnp , tn) from mn
i as

ρni =
mn
i

∆xd
, (150)

ρ(xnp , tn) ≈
∑
i

ρni Ni(x
n
p). (151)

Therefore

Vnp ≈
mp∑

i
mni
∆xd
Ni(xnp)

=
mp∆x

d∑
im

n
i Ni(x

n
p)

. (152)

Another approach is given as follows. If we have an approximation of the deformation
at each Lagrangian particle: Fnp ≈ F(Xp, tn) (which we will usually need for an elastic
material), then you can approximate Vnp using Jnp = det(Fnp). Specifically, if we assume
we know the initial volume V0p =

∫
B0∆x,p

dx, then

Vnp ≈ V0pJnp . (153)

If we use the formula for the first Piola Kirchoff stress σ = 1
JPF

T then we can further
rewrite Equation 147 and 148 in terms of P instead of σ:∑

p

σp
n
αβNi,β(x

n
p)V

n
p =
∑
p

1

Jnp
PnpαγF

n
pβγ

Ni,β(x
n
p)V

0
pJ
n
p =
∑
p

PnpαγF
n
pβγ

Ni,β(x
n
p)V

0
p. (154)

This is the formula that will be more useful in practice because most of our constitutive
models are expressed in terms of P. Now,(

(mv)n+1iα − (mv)niα

)
∆t

=

∫
∂Ωt

n
Ni(x)tα(x, tn)ds(x) −

∑
p

PnpαγF
n
pβγ

Ni,β(x
n
p)V

0
p . (155)

We will next discuss how to approximate the deformation gradient (Fnp) at each La-
grangian point (xnp).

9.4 Deformation Gradient Evolution

In order to continue the discussion of time stepping schemes, we need to consider the
constitutive model. So far, the results hold independent of the type of material. We
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will generally consider models where the stress depends primarily on the change of
shape in the material as expressed via the deformation gradient (this includes all models
discussed in Section 6). Next, we will discuss how this can be computed in the MPM
context. The deformation gradient is more difficult to compute for Eulerian methods (or
Lagrangian methods where there is no mesh, e.g. particle methods). However, we can
use the equation (recall the result from Section 5.4)

∂

∂t
F(X, t) =

∂v

∂x
(φ(X, t), t)F(X, t) (156)

to update (or evolve) a deformation gradient on each material particle by discretizing ∂v
∂x

over the Eulerian grid.

Now let’s reformulate a similar rule discretely. We assume we have the velocity (de-
fined over Ωt

n
) at time tn+1 as a a function of x only. Specifically, we consider the

function vn+1 : Ωt
n → Rd defined as vn+1(x) = V(φ−1(x, tn), tn+1) and also of course

vn+1(φ(X, tn)) = V(X, tn+1). (We have used the same definition in Section 9.1.) With this
we have

∂

∂t
F(X, tn+1) =

∂V

∂X
(X, tn+1) =

∂vn+1

∂x
(φ(X, tn))F(X, tn). (157)

This is useful because if we further use the approximation

∂

∂t
F(Xp, tn+1) ≈

Fn+1p − Fnp
∆t

(158)

then

Fn+1p = Fnp +∆t
∂vn+1

∂x
(xnp)F

n
p =

(
I+∆t

∂vn+1

∂x
(xnp)

)
Fnp (159)

and of course if we use the grid based interpolation formula for vn+1, i.e.,

vn+1(x) =
∑
i

vn+1i Ni(x), (160)

∂vn+1

∂x
(x) =

∑
i

vn+1i

(
∂Ni
∂x

(x)

)T
, (161)

then we have

Fn+1p =

(
I+∆t

∑
i

vn+1i

(
∂Ni
∂x

(xnp)

)T)
Fnp (162)

as the update rule for Fn+1p given the vn+1i and Fnp .

9.5 Forces as Energy Gradient

The elastic response can be shown to arise from an elastic potential energy. This is true
for both the continuous and discrete cases. For the discrete case, consider x̂i defined to
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be the nodes of the Eulerian grid when x̂i = xi. In other words, consider temporarily
that we have allowed the nodes of the Eulerian grid to move with a variable defined as
x̂i denoting the imaginary moved node position. We can then temporarily think of these
x̂i as new Lagrangian degrees of freedom. It is like saying that we switched from having
the Xp as our Lagrangian particles and switched over to Xi = φ−1(xi, tn) as our new
Lagrangian particles and with this we say that xn+1i = φ(Xi, tn+1) = x̂i defines the new
configuration of our material. If we keep this idea in mind, we can show that the forces
derived in Section 9.2 are related to a discrete potential energy in the case of a certain
class of elastic materials. For hyperelastic materials where the first Piola Kirchoff stress
is related to an elastic potential energy density ψ via

P(F) =
∂ψ

∂F
(F) (163)

as we saw in Section 6, we can define the total potential energy (as a function of the
moved node positions x̂ as

e(x̂) =
∑
p

ψ(Fp(x̂))V
0
p (164)

where x̂ is the full (assembled) vector of all Eulerian x̂i. Here we think of the deformation
gradient as a function of x̂. This is because we are temporarily thinking of the motion
of the material as defined in terms of the Xi = φ−1(xi, tn) and x̂i. Really, this is an
equivalent notion to letting motion be defined via the vn+1i . Specifically we can think of
them defined as

vn+1i =
x̂i − xi
∆t

or x̂i = xi +∆tvn+1i . (165)

This leads to the particle wise deformation gradient formula of

Fpβγ(x̂) = F
n
pβγ

+∆t
∑
j

(
x̂jβ − xjβ
∆t

)∑
τ

Nj,τ(x
n
p)F

n
pτγ

. (166)

If we differentiate the energy with respect to x̂iα (the αth component of x̂i) we get

∂e

∂x̂iα
(x̂) =

∑
p

∑
β,γ

Pβγ(Fp(x̂))
∂Fpβγ

∂x̂iα
(x̂)V0p. (167)

From the formula for the deformation gradient above, we can see that

∂Fpβγ

∂x̂iα
(x̂) = δαβ

∑
τ

Ni,τ(x
n
p)F

n
pτγ

(168)

and if we plug this into Equation 167 we get

∂e

∂x̂iα
(x̂) =

∑
p

Pαγ(Fp(x̂))F
n
pτγ
Ni,τ(x

n
p)V

0
p. (169)
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Therefore, comparing with the result in Section 9.3, we can see that the force on the
Eulerian grid node i is

−
∂e

∂x̂iα

x̂ =
 x0
x1
...


 . (170)

In other words, we can write the momentum update as

(mv)n+1iα = (mv)niα −∆t
∂e

∂x̂iα

x̂ =
 x0
x1
...


+∆t

∫
∂Ωt

n
Ni(x)tα(x, tn)ds(x) . (171)

10 explicit time integration

In this section we describe the easiest implementation of MPM with Symplectic Euler
time integration. Most of the formulas in this section are derived in previous sessions.
They are restated here to provide a more concise and practitioner friendly reference for
implementing MPM. We first discuss some separate modules and then state the full MPM
algorithm.

10.1 APIC Transfers

The Affine Particle-In-Cell (APIC) method [Jiang et al., 2015] is recommended for particle-
grid transfers due to its nice numerical properties. We ignore the time superscripts here
for notation simplicity.

The transfer from particles to grid is

mi =
∑
p

wipmp, (172)

mivi =
∑
p

wipmp(vp +Bp(Dp)
−1(xi − xp)), (173)

where Bp is a matrix quantity stored at each particle (just like mass, position and velocity),
Dp is given by

Dp =
∑
i

wip(xi − xp)(xi − xp)
T (174)
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and is derived by preserving affine motion during the transfers. The corresponding
transfer from the grid back to particles is

vp =
∑
i

wipvi, (175)

Bp =
∑
i

wipvi(xi − xp)
T . (176)

Conveniently, Dp takes on a surprisingly simple form in the case of the quadratic (Dp =
1
4∆x

2I) and cubic (Dp = 1
3∆x

2I) interpolation stencils commonly used for MPM. Note
that for these interpolating stencils, multiplying by (Dp)

−1 amounts to a constant scaling
factor.

If (though not recommended) linear spline is used for the interpolation function, to pre-
vent singular Dp, an alternative formulation of APIC particle to grid is given as

mi =
∑
p

wipmp, (177)

mivi =
∑
p

wipmp(vp + Cp(xi − xp)), (178)

and the grid to particle transfer is

vp =
∑
i

wipvi, (179)

Cp =
∑
i

vi

(
∂Ni
∂x

(xp)

)T
. (180)

Note that in this case, Cp is just the Eulerian velocity gradient evaluated at xp, which we
have already computed for evolving Fp.

10.2 Deformation Gradient Update

In the beginning of each time step, the grid node locations are always on a undeformed
regular grid. Let’s call them xni . The sup-script n is not necessary if we use the same
grid all the time but we’ll keep it here for notation convention. The deformation gradient
of each particle can be updated following the motion of the grid. If we assume a grid
velocity field vn+1i , it can be shown that the update rule for F is

Fn+1p =

(
I+∆t

∑
i

vn+1i (∇wnip)
T

)
Fnp . (181)
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10.3 State Update

Symplectic Euler time integration on the grid implies

xn+1i = xni +∆tv
n+1
i , (182)

vn+1i = vni +∆tfi(x
n
i )/mi. (183)

One way of thinking about the grid motion is

x = x(v), (184)

i.e. the grid node positions are simply a function of grid node velocities via Equation 182.
Therefore

fni = fi(x
n
i ) = fi(x(0)), (185)

i.e., the explicit force is simply the force assuming zero grid motion. Using Equation 182,
we can rewrite Equation 181 as

Fp(x) =

(
I+
∑
i

(xi − x
n
i )(∇w

n
ip)

T

)
Fnp , (186)

so that Fp is a function of grid node locations x.

10.4 Forces

MPM Forces are defined on grid nodes. As we’ve seen earlier, for hyperelastic solids, the
force can be derived either from the weak form of momentum equation or as the gradient
of total potential energy. The later is simpler and often used as long as there is a well
defined potential energy. Here we focus on hyperelastic solids.

As mentioned before, we assume a deformation gradient based hyperelastic energy den-
sity. The total elastic potential energy is then

e =
∑
p

V0pΨp(Fp), (187)

where V0p is the material space volume of particle p.

Nodal elastic force is the negative gradient of the total potential energy evaluated at
nodal positions. Using Equation 186, the MPM spatial discretization of the stress-based
forces is given as

fi(x) = −
∂e

∂xi
(x) = −

∑
p

V0p

(
∂Ψp

∂F
(Fp(x))

)
(Fnp)

T∇wnip. (188)
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This is the force acting on grid node i resulting from elastic stresses of its nearby particles.
In the case of Symplectic Euler, the force is easily written as

fni = fi(x
n
i ) = −

∑
p

V0p

(
∂Ψp

∂F
(Fnp)

)
(Fnp)

T∇wnip, (189)

which fully depends on the existing particle/grid weights and particle attributes. Al-
ternatively if we don’t have the energy density, the force can also be written using the
Cauchy stress,

fni = fi(x
n
i ) = −

∑
p

Vnpσ
n
p∇wnip, (190)

this comes from the weak form.

10.5 MPM Scheme: Full Algorithm

Here we outline the full update scheme for Symplectic Euler MPM. The particles are
assumed to have already been initialized (i.e. each particle has a mass mp, volume
V0p, initial position xp, initial velocity vp, affine matrix Bp and their material-related
parameters (such as µ and λ in the case of Neo-Hookean).

1. Particle to grid transfer (P2G). Using the APIC formula from Section 10.1, the first
step is to transfer particle quantities to the grid. In particular, this step computes
grid mass and momentum.

2. Compute grid velocities. vi =
mivi
mi

. For nodes with mass equals to 0, mi and vi
are manually reset to 0. One would traditionally think this requires a floating point
threshold when implementing this step. However in practice directly comparing
against 0.0f will not produce any unstable behavior or overflow. This is because
even though you may get large forces on small mass nodes, the effect is scaled
by the weight again when transferrring back to particles. In fact, hard coding a
threshold will cause various problems such as drifting of total momentum.

3. Identify grid degree of freedoms. This step is important for implementation effi-
ciency. We label the grid nodes with nonzero masses to be the actually degree of
freedoms. All other nodes will remain static and are not considered being part of
the solver unknowns.

4. Compute explicit grid forces fni using Equation 189.

5. Grid velocity update using Equation 183. This step should take the boundary
conditions or collision objects into account. In the case of explicit integration, each
nodal velocity can be independently set to the desired value due to Dirichlet bound-
ary conditions or rigid object collisions. See Section 12.1 for more details on how to
deal with collision objects.
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6. Update particle deformation gradient using Equation 181. Note that we never
actually moved the grid or computed any new grid x. The motion is imaginary and
only velocities are explicitly stored.

7. Grid to particle transfer (G2P). This step computes new particle velocities vn+1p

and affine matrices Bn+1p with the scheme given in Section 10.1.

8. Particle advection. Finally particles are advected with their new velocities: xn+1p =

xnp +∆tv
n+1
p . Note that this is only true when APIC is used. In a FLIP or FLIP-PIC-

blending transfer scheme, xn+1p =
∑
i x
n+1
i wip should be used instead (note that

these two formulas are equivalent in the PIC or APIC case).

11 implicit time integration

For implicit time integration, the main difference from explicit is the grid velocity update
step in the MPM algorithm.

11.1 Force Derivative

Recall that the total elastic potential energy can be expressed in terms of the energy
density Ψ as ∫

Ω0
Ψ(F(X))dX, (191)

where Ω0 is the undeformed configuration of the material. The MPM spatial discretiza-
tion of the stress-based forces is equivalent to differentiation of a discrete approximation
of this energy with respect to the Eulerian grid node material positions. However, we
do not actually deform the Eulerian grid so we can think of the change in the grid node
locations as being determined by the grid node velocities. That is, if xi is the position of
grid node i, then x̂i = xi +∆tvi would be the deformed location of that grid node given
the current velocity vi of the node. If we refer to the vector of all grid nodes x̂i as x̂, then
the MPM approximation to the total elastic potential can be written as

e(x̂) =
∑
p

V0pΨ(F̂p(x̂)), (192)

where V0p is the volume of material originally occupied by particle p, and F̂Ep is related
to x̂ as

F̂p(x̂) =

(
I+
∑
i

(x̂i − xi)(∇wnip)
T

)
Fnp . (193)
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With this convention, the MPM spatial discretization of the stress-based forces is given
as

−fi(x̂) =
∂e

∂x̂i
(x̂) =

∑
p

V0p
∂Ψ

∂F
(F̂p(x̂))(F

n
p)
T∇wnip. (194)

That is, fi(x̂) is the force on grid node i resulting from elastic stresses. This can also be
written in terms of the Cauchy stress
σp =

1
Jnp

∂Ψ
∂F (F̂p(x̂))(F

n
p)
T as

fi(x̂) = −
∑
p

Vnpσp∇wnip, (195)

where Vnp = JnpV
0
p is the volume of the material occupied by particle p at time tn.

We highlight this relation of the MPM spatial discretization to the elastic potential be-
cause we would like to evolve our grid velocities vi implicitly in time. With this conven-
tion, we can take an implicit step on the elastic part of the update by utilizing the Hessian
of the potential with respect to x̂. The action of this Hessian on an arbitrary increment
δu can be expressed as

−δfi =
∑
j

∂2e

∂x̂i∂x̂j
(x̂)δuj =

∑
p

V0pAp(F
n
p)
T∇wnip, (196)

where

Ap =
∂2Ψ

∂F∂F
(F̂p(x̂)) :

∑
j

δuj(∇wnjp)
TFnp

 (197)

and the notation A = C : D is taken to mean Aij = CijklDkl with summation implied on
indices kl.

We can also derive this with the index notation. Recall the force is already written as
a function of x in Equation 188, differentiating with implicitly summed index notations
gives

∂e

∂xiα∂xjτ
= −

∂fiα
∂xjτ

=
∑
p

V0p
∂2Ψ

∂Fαβ∂Fτσ
(∇wnjp)ω(∇w

n
ip)γ(F

n
p)ωσ(F

n
p)γβ, (198)

where ∂2Ψ
∂F2

can be derived from Ψ(F).

11.2 Backward Euler System

Backward Euler time integration replaces vn+1i = vni +∆tfi(x
n
i )/mi (Equation 183) with

vn+1i = vni +∆tfi(x
n+1
i )/mi, (199)
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i.e. the force is implicitly dependent on grid motion. This allows for larger time steps
and more stable behaviors.

Rearranging the equations of motion reveals a nonlinear system of equations of grid node
velocities:

h(vn+1) =Mvn+1 −∆tf(xn +∆tvn+1) −Mvn = 0. (200)

11.3 Newton’s Method

Solving Equation 200 can be done with a traditional Newton-Raphson solver. One starts
with an initial guess v(0), such as zero or the previous velocity vn. Then the solution is
iteratively improved with

v(i+1) = v(i) −

(
∂h

∂v
(v(i))

)−1

h(v(i)), (201)

where each step the linear system is solved with a Krylov solver such as MINRES. Note
that in each Newton iteration, Fp needs to be updated according to the velocity, an old
state Fnp needs to be stored for each new Fp evaluation as well as the final Fp update after
the Newton solve.

In many cases only one iteration of Newton step is taken to already allow time steps
orders of magnitude higher than explicit methods. This is almost equivalent to the so
called semi-implicit MPM integration.

11.4 Linearized Force

We think of the elasto-plastic response as defined from the material positions of the
Eulerian grid nodes x̂i = xi + ∆tvi. However, as noted before, we never deform this
grid. Therefore, we can think of x̂ = x̂(v) as defined by v. With this in mind, we use the
following notation fni = fi(x̂(0)), fn+1i = fi(x̂(v

n+1)) and ∂2en

∂x̂i∂x̂j
= −

∂fni
∂x̂j

= − ∂fi
∂x̂j

(x̂(0)).

Using these derivatives, we form our implicit update using vn+1i = vni + ∆tm
−1
i ((1 −

β)fni + βf
n+1
i ) ≈ vni + ∆tm

−1
i (fni + β∆t

∑
j
∂fni
∂x̂j
vn+1j ). This leads to a (mass) symmetric

system to solve for vn+1i ∑
j

(
Iδij +β∆t

2m−1
i

∂2en

∂x̂i∂x̂j

)
vn+1j = v?i , (202)

where the right hand side is
v?i = v

n
i +∆tm

−1
i f

n
i (203)
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Figure 4: An overview of the implicit time integration MPM scheme.

and β chooses between explicit (β = 0), trapezoidal (β = 1
2 ), and backward Euler (β = 1).

It can be shown this scheme is equivalent to taking one step of Newton’s method with
a zero velocity initial guess. It requires solving one linear system in each time step. An
overview of the semi-implicit time integration MPM scheme is shown in Figure 4.

11.5 Optimization based Integrator

The traditional Newton-Raphson solver leads to a significant time step improvement
over more standard explicit treatments, but still requires a small time step in practice to
remain stable.

In fact, when the forces are derived from a potential energy function (which is true for
most cases), it is possible to let Newton’s method converge reliably under arbitrary ∆t on
the order of CFL condition by recasting the equation solving problem as an optimization
problem, for which robust and efficient methods exist.

We will show that solving

h(vn+1) =Mvn+1 −∆tf(xn +∆tvn+1) −Mvn = 0 (204)

is equivalent to minimizing the following objective function:

E(vi) =
∑
i

1

2
mi ‖vi − vni ‖

2 + e(xni +∆tvi). (205)

Using this formulating, it is possible to take significantly larger time steps, providing
a significant computational savings with minimal modification to the original approach.
We refer to [Gast et al., 2015] for more details on implementing this integrator.
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12 more topics

12.1 Collision Objects

We process collisions against collision on the grid velocity vi immediately after forces
are applied to grid velocities. In the case of semi-implicit integration, this contributes to
the right hand side of the linear system, and degrees of freedom corresponding to the
colliding grid nodes are projected out during the solve. The collision treatments can be
applied once more to particle velocities vn+1p just before updating positions to account for
the minor discrepancies between particle and grid velocities due to interpolation. In each
case, collision processing is performed the same way. All of our collisions are inelastic.
Note that the particle based collision will introduce inconsistency in the deformation
gradients on particles. It may produce artifacts for certain simulations and should only
be turned on if necessary.

Collision objects are represented as level sets, which makes collision detection (φ 6
0) trivial. In case of a collision the local normal n = ∇φ and object velocity vco are
computed. First, the particle/grid velocity v is transformed into the reference frame of
the collision object, vrel = v− vco. If the bodies are separating (vn = vrel ·n > 0), then no
collision is applied. Let vt = vrel − nvn be the tangential portion of the relative velocity.
If a sticking impulse is required (‖vt‖ 6 −µvn), then we simply let v ′rel = 0, where
the prime indicates that the collision has been applied. Otherwise, we apply dynamic
friction, and v ′rel = vt + µvnvt/‖vt‖, where µ is the coefficient of friction. Finally, we
transform the collided relative velocity back into world coordinates with v ′ = v ′rel + vco.

We used two types of collision objects: rigid and deforming. In the rigid case, we store
a stationary level set and a potentially time-varying rigid transform, which we can use
to compute φ, n, and vco at any point. In the deforming case, we load level set key
frames and interpolate them using φ(x, t+ γ∆t) = (1− γ)φ(x− γ∆tvco, t) + γφ(x+ (1−

γ)∆tvco, t+ ∆t), except we compute the velocity as vco = (1− γ)v(x, t) + γv(x, t+ ∆t)
instead of the average velocity.

Finally, we utilize a sort of sticky collision in situations where we want the material to
stick to vertical or under-hanging surfaces. In this case, Coulomb friction is insufficient
since the normal relative velocity would be zero (vertical) or positive (under-hanging
and separating due to gravity). We achieve this effect by setting v ′rel = 0 uncondition-
ally for collisions against these surfaces. Dirichlet boundary condition on grid nodes is
equivalent to sticky collision.
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12.2 Lagrangian Forces

In a traditional MPM simulation, forces are computed using we compute forces as in
Equation 188. Letting each particle to store a deformation gradient has the advantages
of a mesh-free method, such as effortless topology change. When MPM is used for simu-
lating traditional rubber-like elastic solids, it makes more sense to have the connectivity
information as in mesh-based FEM solvers because a mesh can provide more accurate
deformation gradient computations and easier rendering. Here we show that for objects
that are not intended to undergo topology change, a meshed approach is also available
and can be easily integrated into the MPM framework.

In this case, we can use any Lagrangian force model (springs, finite elements, etc.) for
which we can write down total potential energy W(xp). Corresponding to this La-
grangian force model, we compute forces fp = − ∂W

∂xp
. We also assume that given any vec-

tor δuq on particles we can multiply by force derivatives ∂fp
∂xq

to obtain δfp =
∑
q
∂fp
∂xq
δuq.

Since these force-related constructs are purely Lagrangian and are computed in the usual
way, we will not elaborate on them here.

Although we have defined our mesh-based forces as Lagrangian forces, we must still
apply them through the grid. We must describe how particle positions xp relate to our
(conceptually) moving grid nodes xi so that forces can be evaluated. Then, we must
compute fi from fp and find a means of computing δfi given δui. Doing this allows us
to use Lagrangian forces as Eulerian forces. Comparing our update rules for xp and xi
we find xp =

∑
iw

n
ipxi. Using the chain rule,

fi =
∑
p

wnipfp δfi =
∑
p,q,j

wnip
∂fp

∂xq
wnjqδuj. (206)

Although this formula is written with three nested summations, the computation can
be done efficiently by computing the summations consecutively. Since these forces are
applied to the grid, both the MPM and Lagrangian approaches can be employed in the
same simulation. Each particle is labeled as an MPM particle or a meshed particle. Note
that the deformation gradient Fnp stored on meshed particles is never used, since for those
particles this quantity is computed using the mesh. This provides an effective means of
coupling MPM with mesh-based approaches. This gives the precise surface tracking of
Lagrangian techniques coupled with the automatic collision handling of Eulerian grids.
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