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We present a numerical method for the solution of the Navier–Stokes equations in three
dimensions that handles interfacial discontinuities due to singular forces and discontinuous
fluid properties such as viscosity and density. We show that this also allows for the
enforcement of normal stress and velocity boundary conditions on irregular domains. The
method improves on results in [1] (which solved the Stokes equations in two dimensions)
by providing treatment of fluid inertia as well as a new discretization of jump and
boundary conditions that accurately resolves null modes in both two and three dimensions.
We discretize the equations using an embedded approach on a uniform MAC grid to
yield discretely divergence-free velocities that are second order accurate. We maintain
our interface using the level set method or, when more appropriate, the particle level
set method. We show how to implement Dirichlet (known velocity), Neumann (known
normal stress), and slip velocity boundary conditions as special cases of our interface
representation. The method leads to a discrete, symmetric KKT system for velocities,
pressures, and Lagrange multipliers. We also present a novel simplification to the standard
combination of the second order semi-Lagrangian and BDF schemes for discretizing the
inertial terms. Numerical results indicate second order spatial accuracy for the velocities
(L∞ and L2) and first order for the pressure (in L∞, second order in L2). Our temporal
discretization is also second order accurate.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The simulation of multiphase incompressible flow in arbitrary domains is necessary for many applications in computa-
tional physics and engineering. Unfortunately, it is particularly difficult to attain orders of accuracy easily achievable in the
case of uniform or periodic domains. Due to irregular interface and domain boundary geometries, a natural approach to the
numerical approximation of the equations is the finite element method (FEM) with unstructured meshes that conform to
the irregular geometry. However, meshing complex interface geometries can prove difficult and time-consuming when the
interface frequently changes. We have recently developed a class of embedded methods that utilize uniform Cartesian grids
and sub-cell representations of interface/boundary geometry to achieve optimal accuracy without the need for frequent
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remeshing [1–4]. Our use of regular grids simplifies the implementation, permits straightforward numerical linear algebra
and naturally allows for higher order accuracy in L∞ . We have used the term virtual node methods to describe these tech-
niques since they utilize additional structured degrees that are outside the domain of interest. In the present work, we
introduce a new virtual node method for approximating the two-phase Navier–Stokes equations with irregular embedded
interfaces and boundaries on a uniform Cartesian Marker and Cell (MAC) grid, where velocity degrees of freedom are located
at face centers and pressure degrees of freedom are located at cell centers.

As in [1], we duplicate Cartesian grid cells along the interface Γ to introduce additional virtual nodes that accurately
resolve discontinuous quantities. This naturally treats discontinuities in material properties such as viscosity and density.
Interface cells are cut and duplicated using a level set that allows for accurate evaluation of integrals needed for the
numerical stencils. These stencils (for the viscous stress forces as well as the divergence-free and jump constraints) are
constructed from a variational formulation that yields a symmetric linear system. This approach requires the introduction of
a Lagrange multiplier variable to maintain continuity of the fluid velocity across the interface. Unfortunately, the introduction
of this variable forced the approach in [1] to require that interface domain geometry have a constant normal on each MAC
grid cell. Although it is a reasonable restriction in two dimensions, this is not possible in three dimensions and so the
method was fundamentally limited to 2D. We present an improved discretization of this Lagrange multiplier term that
works naturally in both two and three dimensions without the restriction of a constant normal per MAC grid cell. The
necessity of this in [1] was due to the requirement that the discretization resolve null modes in the variational form of the
equations exactly. Failure to do this resulted in significant degradation in performance. We show that our new discretization
also captures these modes exactly.

We also consider a simplification to the combination of the second order Backward Difference Formula (BDF) and second
order semi-Lagrangian schemes that are often used in second order Navier–Stokes discretizations to calculate the interme-
diate velocity field [5]. This simplification reduces the number of semi-Lagrangian interpolation steps required from four to
two while retaining the temporal and spatial accuracy of the original method. The interface is evolved using the level set
method or, when more appropriate, the particle level set method. Numerical experiments indicate second order accuracy
in L∞ and L2 for the velocity and first order accuracy in L∞ , second in L2, for pressure. Numerical experiments indicate a
stability restriction on the minimum time step size (relative to the grid spacing) that may be taken by our method in the
case of a Navier–Stokes discretization. We explore the nature and source of this restriction further.

2. Existing methods

In our discussion of existing approaches, we will focus only on embedded (or immersed) methods that avoid unstruc-
tured meshing when addressing boundary and interface conditions at irregular geometric boundaries. Embedded methods
place an irregular domain, or a domain with an interface, into a rectangular computational domain with a Cartesian grid.
A good review of such methods is given by Lew et al. in [6]. A classic embedded method is the Immersed Boundary Method
(IBM) developed by Peskin [7–12] originally to simulate blood flow in the heart. The IBM uses regularized delta functions
to represent singular forces acting on interfaces. This renders the method first order accurate in general for thin interfaces,
implying that the physical characteristics of the flow near those interfacial boundaries are not accurately captured [13]. For
interfaces with a nonzero thickness, modifications to the IBM can yield second-order accuracy [14]. The original IBM also
featured poor volume conservation near the interface, motivating the development of a volume-conserving version in [15].
However, the IBM has proven very useful for many applications.

Many methods have been developed to improve on the performance of the IBM. Mittal and collaborators have shown
that a discrete forcing (rather than one first applied to the continuous equations and then discretized) can be used to
get second order accuracy for flows in irregular domains [16–19]. The Immersed Interface Method (IIM) [13,20–23] is
a popular example that attains second order accuracy in L∞ by modifying the numerical stencil near the interface, and
by using jump conditions instead of regularized delta functions to relate the singular forces to interfacial discontinuities
in pressure, velocities and their derivatives. The IIM has been used in simulating interfaces between fluids with different
viscosities [24–27] and has been extended to higher-order implementations [28,29]. The IIM is considerably more difficult to
implement than the IBM and most applications are in two space dimensions as a result. However, researchers have applied
the IIM to three-dimensional flows [30]. Recent IIM approaches use adaptive grid techniques near the interface to maintain
high resolution near the important parts of the boundary while reducing the overall degrees of freedom [31]. In general,
the IIM yields non-symmetric linear systems, and therefore requires the use of solvers such as GMRES or BiCG-STAB. Some
implementations of IIM [32] yield symmetric positive definite systems, however this is only possible when the viscosity
is continuous across the interface. The Matched Interface and Boundary (MIB) method [29,33] adjusts the approach of the
IIM with dimension-by-dimension modifications that utilize fictitious points. Enforcement of jump conditions is decoupled
from the modified finite difference stencil. The work of [34] applies the framework of the MIB to interfacial flow in two
dimensions.

Our approach was initially motivated by The Ghost Fluid Method (GFM). However, because that method does not in
the end introduce any additional degrees of freedom into the discretization, we used the term from another of Fedkiw’s
methods [35] that does similarly introduce virtual degrees of freedom. Notably, the GFM always guarantees a symmetric
discretization. Initially applied to the Poisson equation with interfacial jumps and variable coefficients [36], the GFM was
also used to simulate multiphase incompressible flow in [37]. Unfortunately, the GFM is only capable of achieving first order
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results for interface problems. Also, in [37] the GFM treats viscous terms explicitly because they cannot be decoupled in the
case of discontinuous viscosity.

Some of the first embedded methods were fictitious domain methods by Hyman [38] and Saul’ev [39]. The fictitious
domain approach has been used with incompressible materials in a number of works [40–48]. These approaches embed the
irregular geometry in a simpler domain for which fast solvers exist (e.g. Fast Fourier Transforms). The calculations include
fictitious material in the complement of the domain of interest. A forcing term (often from a Lagrange multiplier) is used
to maintain boundary conditions at the irregular geometry. Although these techniques naturally allow for efficient solution
procedures, they depend on a smooth solution across the embedded domain geometry for optimal accuracy, which is not
typically possible.

The extended finite element method (XFEM) and related approaches in the finite element literature also make use of
geometry embedded in regular elements. Although originally developed for crack-based field discontinuities in elasticity
problems, these techniques are also used with embedded problems in irregular domains. Daux et al. first showed that
these techniques can naturally capture embedded Neumann boundary conditions [49,50]. These approaches are equivalent
to the variational cut cell method of Almgren et al. in [51]. Enforcement of Dirichlet constraints is more difficult with
variational cut cell approaches [52,6] and typically involves a Lagrange multiplier or stabilization. Dolbow and Devan recently
investigated the convergence of such approaches with incompressible materials and point out that much analysis in this
context remains to be completed [53]. Despite the lack of thorough analysis, such XFEM approaches appear to be very
accurate and have been used in many applications involving incompressible materials in irregular domains [54–58].

There are also a handful of highly accurate embedded finite difference (FDM) and finite volume methods (FVM) utilizing
cut uniform grid cells which have been developed in the context of incompressible flow for irregular domains, although
these methods are not applicable to interfacial flows. For example, Marella et al. [59] use collocated grids and define sub cell
interface and boundary geometry in cut cells via level sets, and achieve second order accuracy in two and three dimensions.
Ng et al. also use level set descriptions of the irregular domain and achieve a symmetric positive definite discretization with
second order accuracy in L∞ for flows in two [60] and three [61] dimensions.

3. Numerical method

We consider the Navier–Stokes equations over an irregular domain Ω = Ω+ ∪Ω− with boundary ∂Ω = ∂Ωd ∪∂Ωn ∪∂Ωs ,
where Dirichlet velocity constraints are enforced at ∂Ωd , Neumann boundary conditions at ∂Ωn , and slip conditions at ∂Ωs .
The two subdomains Ω+ and Ω− are separated by an interface Γ , which is typically a co-dimension one closed surface.
The corresponding equations are

ρut + ρ(u · ∇)u = ∇ · σ + f , x ∈ Ω\Γ , (1)

∇ · u = 0, x ∈ Ω\Γ , (2)

[u] = ai, x ∈ Γ, (3)

[σ · n] = f̂ , x ∈ Γ, (4)

u = b, x ∈ ∂Ωd, (5)

σ · n = ĝ, x ∈ ∂Ωn, (6)

n · u = n · c, x ∈ ∂Ωs, (7)(
I − nnT ) · σ · n = (

I − nnT )
ĥ, x ∈ ∂Ωs (8)

where the stress is σ = μ(∇u + ∇uT ) − p I , ai describes velocity jumps at interfaces, b describes velocities at Dirichlet
boundaries, c represents slip velocities, f̂ describes interface forces, ĝ describes Neumann boundary conditions, and ĥ
describes tangential stresses for slip boundary conditions. Although for physical problems the velocity jump is equal to
zero (representing continuity of the velocity), we include a velocity jump which may be nonzero in our formulation of
the interface. This is convenient not only for testing our implementation, but for handling the other types of boundary
conditions. We take the standard convention of defining [u] = u+ − u− for interface jumps and n as the normal pointing
outward from Ω− . The interface Γ and boundary pieces ∂Ωd , ∂Ωn , and ∂Ωs are assumed to be smooth and not intersect
one another. This layout is illustrated in Fig. 1. We do not consider triple junctions in this paper.

Our method extends the framework of [1] from two to three spatial dimensions and from the Stokes equations to the
full Navier–Stokes equations. As with [1], our method is second order in L∞ and L2 for the velocities and first order in
L∞ for the pressure (second order in L2) for embedded interfacial discontinuities and irregular boundaries in two-phase
flows, though unlike the previous work, we are also second order in time. Our method produces sparse and symmetric
indefinite KKT-type linear systems. Furthermore, our approach yields discretely divergence-free velocities. We do not require
knowledge of jumps on the fluid variables and their derivatives but rather only of expressions for the interfacial forces.

Our numerical method uses an Eulerian representation of the fluid velocity and pressure. A level set φ represents the
domain Ω and interface Γ at each time step. We split the Navier–Stokes equation (1) into two equations by introducing



224 C. Schroeder et al. / Journal of Computational Physics 265 (2014) 221–245
Fig. 1. (a) MAC layout in two dimensions. The red dots indicate location of pressure and level set variables, the green and blue triangles represent horizontal
(u) and vertical (v) variables respectively. (b) Interface Γ separates the fluid domain Ω = Ω− ∪Ω+ ∪Γ . In this case all sides of the computational domain
have a periodic boundary condition applied. (c) Another layout which our method can handle in practice. Here an embedded Dirichlet boundary condition
is applied on the left side of the domain Ω and a Neumann boundary condition on the right. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

an intermediate velocity u� . We use a weak form of the Navier–Stokes interface problem and simultaneously solve for
the pressure, velocity, and Lagrange multipliers needed to preserve the specified velocity jumps across the interface. The
complete procedure for advancing one time step is:

1. Update level set φn → φn+1.
2. Advect time n − 1 and n velocity.
3. Compute intermediate fluid velocity u� using BDF.
4. Setup symmetric system and right hand side.
5. Solve the linear system to obtain p and un+1.

We will describe each of these steps in necessary detail, following which we will discuss how to add surface tension
forces, and present requirements for the stability of our method.

3.1. Spatial discretization

We use a standard MAC layout for our degrees of freedom, with velocity degrees of freedom at faces and pressures at
cell centers, as shown in Fig. 1(a). We maintain our level set at cell centers.

Fluid advection and the implicit update at the end both require valid ghost data in a narrow band around the region
where each fluid phase is defined. We accommodate this by storing a separate velocity array for each fluid phase for un−1

and un , which over the course of a time step we update to un and un+1. At each MAC face, only one of the velocity arrays
is considered to hold a real velocity degree of freedom, based on the sign of the level set interpolated to that face. The
other array is treated as ghost data and is populated as needed using the extrapolation of [62]. Note that across interfaces
the velocity field, though physically continuous, may have a jump in its derivatives. In our case, we also included support
for velocity discontinuities, since this makes analytic tests far easier to construct and thus the method itself easier to test
and debug.

In practice, we found using the level set directly to distinguish real and ghost velocities to be too unreliable and on
a few occasions lead to the use of invalid velocity data. We avoid these problems by explicitly storing which, if any, velocity
degree of freedom is valid at each MAC face, both for un−1 and un . Since we do this, there is no need to maintain a level
set other than the one at the current time.

3.2. Update level set

We discretize our momentum equation at time tn+1. Setting up the intermediate u� requires that we know which fluid
region is valid at each face, which is determined by φn+1. Thus, we begin our time step by updating our level set φn → φn+1.
We use the level set method for this task in most of our examples. For examples where the level set method loses volume
too quickly, we use the more expensive but more accurate particle level set method [63] instead.

In the case of the level set method, there are two steps: advection and reinitialization. We advect our level set using
third order Runge–Kutta [64] in time and fifth order HJ-WENO [65,66] in space. This update requires an estimate for un ,

un+1, and then un+ 1
2 . To obtain these, we merge our per-phase velocity fields into a single velocity field by selecting the

non-virtual degree of freedom at each MAC face (as determined by the sign of φ). We will call these merged velocities
un−1

m and un
m . Our velocity estimates for the level set advection are then un

m , 2un
m − un−1

m , and 3
2 un

m − 1
2 un−1

m . Note that our
velocities do not live at the same locations as our level set, so interpolation is required to co-locate them prior to advection.
For reinitialization we use also use third order Runge–Kutta and fifth order HJ-WENO.
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When we use the particle level set method, we perform advection and reinitialization the same way we do for the level
set method. In addition to this, the particle level set method also does particle evolution, for which we use third order
Runge–Kutta and the same velocity estimates as for the level set advection step.

3.3. Discretization of inertial terms

Following [5], we use a variant on semi-Lagrangian for advection and a BDF discretization for the time derivative. This
transforms (1) into

ρ
3un+1 − 4un

d + un−1
d

2	t
= ∇ · σ + f , (9)

where un
d = un(xn) and un−1

d = un−1(xn−1) indicate that the un and un−1 velocities are evaluated at the departure locations
obtained by tracing the position back along the characteristics of the fluid flow from the face located at xn+1.

Note that if we ignore advection, 3un+1−4un+un−1

2	t is a backward difference formula (BDF) for the time derivative, which is

second order at time tn+1. By contrast, the central difference approximation un+1−un−1

2	t is second order accurate at time tn

and would be suitable if we chose to discretize our momentum equation at time tn . This would naturally lead to an explicit
update rule, which would not have suitable stability characteristics. Discretizing at time tn+1 using the BDF rule leads to an
implicit method.

By introducing an intermediate velocity u� we split the Navier–Stokes equations into the two separate equations:

ρ
3u� − 4un

d + un−1
d

2	t
= 0, (10)

in which we apply the inertial terms to an intermediate velocity, and

α
(
un+1 − u�

) = ∇ · σ + f , (11)

where we have introduced α = 3ρ
2	t for convenience accommodating the first time step. We discuss the first time step later

in this section.

Standard discretization To obtain second order temporal and spatial accuracy, [5] computes the advected un
d and un−1

d using

un
d = un

(
xn+1 − 	tun+ 1

2

(
xn+1 − 1

2
	tun(xn+1)))

, (12)

where un+ 1
2 = 3

2 un − 1
2 un−1, and

un−1
d = un−1(xn+1 − 2	tun(xn+1 − 	tun(xn+1))). (13)

Here, the position xn+1 refers to a location where a velocity degree of freedom in un+1 will be required, which in the case
of our MAC discretization corresponds to the center of a face.

To see what this update is doing, consider the update for un
d . In a semi-Lagrangian discretization, an advected velocity

degree of freedom is computed at any desired location by looking upstream from that point to the find the velocity of the
region of fluid that will flow to the desired location during the current time step. A simple implementation of this uses
some estimate of the velocity at the current point, normally un(xn+1). If we assume the fluid ending up at location xn+1

flowed with this velocity for the entire time step, it must have originated at location x̂n = xn+1 − 	tun(xn+1). Thus, we
would compute un

d = un(x̂n
). This update is only a first order accurate approximation for un

d , even if quadratic interpolation
is used. The reason for this is that un(xn+1) is not an accurate enough estimate of how the fluid flowed over the course of
the time step. A better approximation can be obtained using a sort of midpoint approximation, where we estimate how the

fluid was moving half-way through the time step. To do this, we need an estimate x̂n+ 1
2 of where the fluid was half-way

through the time step and what the velocity field looked like at that time, un+ 1
2 . The location we can approximate as before,

x̂n+ 1
2 = xn+1 − 1

2 	tun(xn+1). A suitable estimate for un+ 1
2 can be obtained by extrapolating to that time from un−1 and un .

This gives us a better estimate ûn+ 1
2 = un+ 1

2 (x̂n+ 1
2 ) for the flow over the time step of the fluid that ends up at xn+1. New

we get a new estimate for the departure point x̂n = xn+1 − 	tûn+ 1
2 and the corresponding improved estimate un

d = un(x̂n
).

This is equivalent to (12). The formula for (13) is obtained similarly. Note that this scheme follows the same general pattern
as the classical second order Runge–Kutta method.

These formulas require three velocity evaluations each. The innermost, un(xn+1), is evaluated at a face, so one component
is obtained by a simple lookup and the remaining components are obtained by linear interpolation. Note that the grid is not
moving, so the velocity samples in un+1, un , and un−1 are all stored at the same face-center locations in the MAC grid. The
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middle evaluation requires interpolation, which can be linear interpolation since it will be multiplied by an extra factor of
	t . The outermost velocity evaluation also requires interpolation, but this time quadratic interpolation is required to obtain
second order spatial accuracy.

Simplified discretization Taylor series analysis of the advection and BDF process reveals that the standard approach to com-
puting un

d and un−1
d is more expensive than necessary. In particular, it suffices to use

un
d = un(xn+1 − 	tun(xn+1)) (14)

un−1
d = un−1(xn+1 − 2	tun−1(xn+1)). (15)

That is, the application of inertial terms simplifies down to doing a step of semi-Lagrangian advection on un and un−1 and
then computing u� as a linear combination of the results using (10). Normally, using semi-Lagrangian advection would only
be expected to produce first order temporal accuracy, but using it in combination with BDF in this way yields second order
temporal accuracy. Note that the interaction of semi-Lagrangian advection and BDF does not improve spatial accuracy, so
quadratic interpolation is still required for the semi-Lagrangian advection steps. We use this simplified discretization in all
of our numerical examples.

First step Since BDF is a multistep method, we need a way to take the first step. We can afford one time step with one
order lower, so we simply use a backward Euler discretization, which leads to the alternate formula

ρ
u� − un

d

	t
= 0 (16)

for computing u� , where α = ρ
	t is used in (11) and un

d is computed as in (14).

3.4. Discretization of implicit terms

We follow the derivation put forth in [1] to discretize the implicit portion of our splitting. From (11), the continuity
equation, and the boundary conditions associated with the problem, we derive the weak form, which yields our discrete
stencils for the velocity and fluid variables. We continue by detailing aspects of our discretization necessary to account for
possible null modes of the linear system, and to admit Dirichlet, Neumann, and slip boundary conditions. We then discuss
our implementation of computing the integrals necessary to obtain the discrete stencils in our discretization. In Appendix A,
we assume for now that we have an interface at Γ but no other non-periodic boundaries. We will discuss other boundary
conditions in Section 3.4.4.

3.4.1. Stiffness matrix
The weak form of (11), as derived in Appendix A, is given by the equations∫

Ω\Γ
αw · u dV +

∫
Ω\Γ

μ

2

(∇w + ∇w T ) : (∇u + ∇uT )
dV −

∫
Ω\Γ

p∇ · w dV +
∫
Γ

[w] · q dA

=
∫

Ω\Γ
αw · u� dV +

∫
Ω\Γ

w · f dV +
∫
Γ

w · f̂ , (17)

∫
Ω\Γ

λ∇ · u dV = 0, (18)

∫
Γ

v · [u]dA =
∫
Γ

v · ai dA. (19)

Note that we use [w] = w+ − w− to denote the jump in w across the interface, and w = 1
2 (w+ + w−) for the average of

w across the interface. We further use u = un+1 for conciseness. Also, note that the test functions w , λ, and v complement
the unknowns u, p, and q respectively. The pressure p and other Lagrange multiplier q enforce the continuity equation and
the velocity jump condition, respectively.

We begin our discretization procedure by cutting each grid cell of the computational domain into portions belonging
to Ω+ and Ω− with the aid of the level set function φn+1. Each cell that is cut will have one or more triangles (segments
in 2D) which are used to calculate integrals over each cell that is cut. We refer to an individual triangle as a surface element.
Different approaches exist for performing cutting from a level set; we explain the method we use in Section 3.4.5.

Following [1], we place u and p in space according to a standard MAC layout, with p at cell centers and u components
at face centers. We create copies of these degrees of freedom near interfaces so that each phase will have virtual values
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Fig. 2. A portion of a fluid grid is cut by an interface. The degrees of freedom for the hashed region are shown. Solid markers indicate real degrees of
freedom, and hollow markers indicate virtual degrees of freedom. Note that only degrees of freedom with interpolating functions whose support intersects
the hashed region participate in the discretization.

available as shown in Fig. 2. Although these degrees of freedom can be assigned directly, we create a copy of each degree of
freedom for Ω− and Ω+ , so that each fluid region has its own set of variables, and then discard the variables that are never
referenced (those whose interpolating function support does not intersect Ω− or Ω+ respectively, see Fig. 2). The result is
the same, but we found the resulting algorithm to be easier to implement. We follow a finite element discretization, letting

ux(x) =
∑

i

ux
i Nx

i (x), u y(x) =
∑

i

u y
i N y

i (x), uz(x) =
∑

i

uz
i Nz

i (x), p(x) =
∑

i

pi P i(x),

q(x) =
∑

i

qi Q i(x), (20)

as in [1], where Nx
i (x), N y

i (x), and Nz
i (x) define the standard piecewise trilinear basis functions associated with the velocity

nodes for the respective dimension, and Pi(x) is 1 in MAC cell i and 0 otherwise. We have also introduced the (vector-
valued) basis Q i and (scalar) degrees of freedom qi for q(x). The way these are defined is critical to capturing the null
mode properly, and we delay the definition of these until Section 3.4.3. We discretize the test variables the same way as
their corresponding degrees of freedom as

wx(x) =
∑

i

wx
i Nx

i (x), w y(x) =
∑

i

w y
i N y

i (x), w z(x) =
∑

i

w z
i Nz

i (x), λ(x) =
∑

i

λi P i(x),

v(x) =
∑

i

vi Q i(x). (21)

This leaves the discretization of the forcing terms. The body force f is discretized as a vector quantity ( f x
i , f y

i , f z
i ) that is

constant per MAC cell as

f x(x) =
∑

i

f x
i P i(x), f y(x) =

∑
i

f y
i P i(x), f z(x) =

∑
i

f z
i P i(x). (22)

The interface force f̂ is discretized with a vectorial force ( f̂ x
i , f̂ y

i , f̂ z
i ) that is constant over each surface element i. Letting

Ei be 1 on surface element i and 0 elsewhere,

f̂ x(x) =
∑

i

f̂ x
i Ei(x), f̂ y(x) =

∑
i

f̂ y
i Ei(x), f̂ z(x) =

∑
i

f̂ z
i Ei(x). (23)

The velocity jump is discretized in the same way as f̂ , so that

ax(x) =
∑

i

ax
i Ei(x), ay(x) =

∑
i

ay
i Ei(x), az(x) =

∑
i

az
i Ei(x). (24)

The discretized equations can now be written in matrix form as⎛
⎜⎜⎜⎝

Mx + Axx + Bx Axy Axz −Gx H x

A yx M y + A yy + B y A yz −G y H y

Azx Azy M z + Azz + Bz −G z H z

−(Gx)T −(G y)T −(G z)T 0 0
(H x)T (H y)T (H z)T 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ux

u y

uz

p
q

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Mx(u�)x + J x f x + K x f̂ x

M y(u�)y + J y f y + K y f̂ y

M z(u�)z + J z f z + K z f̂ z

0
Lxax + L yay + Lzaz

⎞
⎟⎟⎟⎠ ,

(25)
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where we have defined the matrix blocks (r, s ∈ {x, y, z})

(
Mr)

i j = α

∫
Ω\Γ

Nr
i Nr

j dV ,
(

Ars)
i j =

∫
Ω\Γ

μNr
i,s Ns

j,r dV , (26)

(
Br)

i j =
∑

s∈{x,y,z}

∫
Ω\Γ

μNr
i,s Nr

j,s dV ,
(
Gr)

i j =
∫

Ω\Γ
Nr

i,r P j dV , (27)

(
H r)

i j =
∫
Γ

Θi N
r
i Q r

j dA,
(

J r)
i j =

∫
Ω\Γ

Nr
i P j dV , (28)

(
K r)

i j =
∫
Γ

Φi N
r
i E j dA,

(
Lr)

i j =
∫
Γ

Q r
i E j dA. (29)

In the H r matrices, the value Θi = 1 if degree of freedom i corresponds to the Ω+ phase and Θi = −1 if degree of freedom
i corresponds to the Ω− phase. For an interface, Φi = 1

2 in the K r matrices; this will change for other types of boundary
conditions that we mention in Section 3.4.4.

3.4.2. Null modes
The discretization of the Stokes equations in [1] allowed for nullspace modes corresponding to the null modes of the

corresponding continuous weak formulation. In the periodic Stokes case, there is a constant velocity mode per dimension
and a constant pressure mode. In problems with an interface, the pressure mode will also have nonzero q entries. The
primary limitation restricting the discretization in [1] to two dimensions is the inability to capture the pressure mode
discretely in 3D. We present a modification to the discretization of q that resolves this limitation and captures null modes
discretely in either two or three dimensions.

First, we must identify the null modes for our weak formulation of Navier–Stokes with an interface and a periodic
boundary, but no other boundary conditions. (We will discuss the effect of other boundary conditions on null modes in
Section 3.4.4.) A null mode (u, p,q) must satisfy homogeneous versions of (17), (18), and (19) for any (w, λ, v):∫

Ω\Γ
αw · u dV +

∫
Ω\Γ

μ

2

(∇w + ∇w T ) : (∇u + ∇uT )
dV −

∫
Ω\Γ

p∇ · w dV +
∫
Γ

[w] · q dA = 0 (30)

∫
Ω\Γ

λ∇ · u dV = 0 (31)

∫
Γ

v · [u]dA = 0. (32)

Letting w = u, λ = p, and v = q,∫
Ω\Γ

αu · u dV +
∫

Ω\Γ

μ

2

(∇u + ∇uT ) : (∇u + ∇uT )
dV −

∫
Ω\Γ

p∇ · u dV +
∫
Γ

[u] · q dA = 0 (33)

∫
Ω\Γ

p∇ · u dV = 0 (34)

∫
Γ

q · [u]dA = 0. (35)

Combining these yields∫
Ω\Γ

αu · u dV +
∫

Ω\Γ

μ

2

(∇u + ∇uT ) : (∇u + ∇uT )
dV = 0. (36)

Both terms are clearly nonnegative. Since α > 0, the first term will be positive unless u = 0. Thus, any null mode neces-
sarily has u = 0. Note that our weak Navier–Stokes formulation has no translational null modes, unlike the periodic Stokes
problem. This reduces the homogeneous system to
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0 = −
∫

Ω\Γ
∇ · w p dV +

∫
Γ

[w] · q dA (37)

= −
∫

Ω\Γ
∇ · (pw)dV +

∫
Ω\Γ

w · ∇p dV +
∫
Γ

[w] · q dA (38)

=
∫

Ω\Γ
w · ∇p dV +

∫
Γ

[pw] · n dA +
∫
Γ

[w] · q dA. (39)

It remains to determine conditions on p and q for a null mode. If we choose f (x) to be a smooth scalar function that is
positive over some set U ⊂ Ω\Γ and zero elsewhere, then w = f ∇p would produce

0 =
∫

Ω\Γ
f ‖∇p‖2 dV , (40)

from which ∇p = 0 in U , and necessarily, ∇p = 0 in Ω\Γ . Thus, p is piecewise constant, and

0 =
∫
Γ

[pw] · n dA +
∫
Γ

[w] · q dA. (41)

If f is positive over some U ⊂ Ω but zero elsewhere, where U ∩ Γ �= ∅, then w = f ∇φ, where φ is the level set, produces

0 =
∫
Γ

[p] f ∇φ · n dA =
∫
Γ

[p] f dA. (42)

From this it follows that [p] = 0 in U and thus [p] = 0 over Γ . Finally,

0 =
∫
Γ

[w] · (pn + q)dA. (43)

By defining w to be f times an arbitrary piecewise constant vector, we are forced to conclude that q = −pn, where p is
the constant pressure. Thus, the only possible nullspace is u = 0, p = c, and q = −cn, where c is a constant.

3.4.3. Discretizing the interface stress jump
In Section 3.4.1, we introduced our discretization for all quantities except q, whose description we left at (20). We will

take up this topic here.
If we return to the equation for the constant pressure null mode u = 0, p = c, q = −cn, we quickly run into a problem

in 3D. In 2D, we can cut the MAC grid cells in a manner yielding one surface element per cut cell (ignoring under-resolved
cases where there may be a second element). Such a procedure was employed in [1], and for each cut cell the normal of
that element was chosen as n. In 3D, it is generally impossible to maintain one surface element per cut cell, so for many
cells we do not have an obvious candidate n.

If we substitute the null mode into (30), we get

−
∫

Ω\Γ
p∇ · w dV +

∫
Γ

[w] · q dA = 0. (44)

Applying the divergence theorem and using p = c yields∫
Γ

[w] · (cn + q)dA = 0. (45)

In [1], n was constant per cut MAC cell, so discretizing q as constant per surface element (of which they had one per cut
MAC cell) allowed them to discretely capture the pressure nullspace. If w were defined as piecewise constant per MAC cell,
then discretizing q as constant per cell would lead to q being defined over each MAC cell Ci as

q|Ci = −c

( ∫
Γ ∩Ci

dA

)−1 ∫
Γ ∩Ci

n dA (46)

as the discrete nullspace. This is not the case, however, since w is discretized with the non-constant bases Nx(x), N y(x),
and Nz(x).



230 C. Schroeder et al. / Journal of Computational Physics 265 (2014) 221–245
Fig. 3. MAC cell with doubly-fine subcells and interface elements. Q n(x) and Q t (x) are constant per interface element (and doubly-fine subcell) but not
per MAC cell. In 2D, cutting on a doubly-fine grid may produce multiple segments, which must be oriented consistently.

Our solution to this problem is to define a normal component qn and two tangential components qt0 and qt1 for each
cut MAC cell. Then, the basis Q n(x) for the normal component qn is the local normal direction Q n(x) = n(x), which will
be different for every surface element in the MAC cell. Now, the nullspace will be captured discretely as qn = −c and
qt0 = qt1 = 0. The tangential bases Q t0(x) and Q t1(x) should be orthogonal tangential directions local to each element.

Unlike Q n(x), which will automatically be consistent across elements in a MAC cell, the directions Q t0(x) and Q t1(x),
if not chosen carefully, could vary wildly in 3D. (In 2D, the tangential component can also be chosen consistently, though
in 2D only one element is required anyway.) To see why such inconsistency may be problematic, consider a MAC cell cut
by two coplanar surface elements e0, e1 of equal area. Let Q t0(x) = − Q t0(y) and Q t1(x) = − Q t1(y), where x ∈ e0 and
y ∈ e1. Such a configuration would be incapable of applying a tangential tractive component in the MAC cell, since the
tangential contribution from qt0 and qt1 to one element would cancel out their contributions to the other element.

To prevent tangential inconsistencies, we define a reference orientation for the MAC cell. The normal direction for this
orientation is the weighted normal,

n′ =
∫
Γ

n dA, n = n′

‖n′‖ , (47)

where A > 0 is the area and n is the unit direction. The first reference tangential direction t0 is chosen as an arbitrary vector
orthogonal to n, and t1 = t0 × n, which we write as R = ( t1 t0 n ). To construct the local orientation for an element e,
we begin by mapping the element’s normal ne into the reference frame as n̂e = RT ne . Note that if the adjacent elements
are similar in orientation, then ne ≈ n and n̂e ≈ k, where i, j, and k are the axial unit vectors. Similarly, we should have
t̂0e ≈ j and t̂1e ≈ i. This suggests choosing

t̂
′
0e = (

I − n̂en̂T
e

)
j, t̂0e = t̂

′
0e

‖t̂
′
0e‖

, t̂1e = t̂0e × n̂e, t0e = Rt̂1e, t1e = Rt̂0e. (48)

We found this local definition of the tangential directions to work well in practice. We can now define the bases for q
locally as

Q n(x) = ne, Q t0(x) = t0e, Q t1(x) = t1e, (49)

where e is the element at location x. In 2D, the tangential direction is simply chosen by rotating the normal direction
clockwise one-quarter turn. Note that unlike the bases for u or p, the bases for q are vector quantities. For simplicity of
exposition, we index the qi degrees of freedom uniformly, ignoring the distinction between normal and tangential degrees
of freedom. These consistency concerns are illustrated in Figs. 3 and 4.

3.4.4. Boundary conditions
Up to this point, we have described how to discretize the interface Γ splitting the domain Ω , but have not treated

boundary conditions on Ω , excepting periodic boundary conditions which can be handled in the obvious way. An advantage
of our discretization of the embedded interface is the relative ease with which we can modify it to implement Dirichlet
velocity boundary conditions (5), Neumann boundary conditions (6), and slipping boundary conditions (7) and (8).

We represent our boundary conditions by treating the regions beyond Dirichlet, Neumann, and slip boundaries as spe-
cial fluid phases. These boundary condition phases have level sets associated with them representing the location of the
boundary. The boundary condition phases are not real fluid. There are no velocity or pressure degrees of freedom associated
with these phases. This representation allows us to reuse our interface routines with little extra work. The problem of han-
dling the different boundary conditions becomes a problem of handling an interface between a fluid region and boundary
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Fig. 4. These illustrations show the local coordinate directions Q n(x) in red, Q t0(x) in green, and Q t1(x) in blue. Q n(x), Q t0(x), and Q t1(x) are constant
per interface element and should be consistent within a MAC cell (left). Consistency in the normal direction is automatic, but if care is not taken, the
tangential directions will be inconsistent. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 5. Triple junctions are formed when interfaces or boundary conditions of different types meet at a point. The filled circles represent the location of
triple junction in these examples.

condition region. Note that if two boundary condition regions are adjacent, there will be an interface between them, which
we can ignore. There will also be a triple junction at the point where the fluid region meets the two boundary condition
regions. Some common triple junction configurations are shown in Fig. 5. We leave the problem of handling triple junctions
for future work.

Dirichlet boundary conditions are implemented by treating the region beyond the boundary as having an identically zero
velocity. Nonzero Dirichlet velocity boundary conditions (u = b at x ∈ ∂Ωd) are treated as velocity jumps at the interface
([u] = b at x ∈ Γd). The stress in the region beyond the boundary condition can be taken to be continuous with the stress in
the fluid, so ([σ ·n] = 0 at x ∈ Γd). There will be q degrees of freedom for Dirichlet boundary conditions just as there are for
regular interfaces. Practically speaking this amounts to omitting the velocity degrees of freedom (as well as the associated
rows and columns of the system) corresponding to the Dirichlet fluid phase.

In the Neumann case, we wish to enforce a desired normal stress. We treat the region beyond the boundary as having
identically zero stress. In (29), we divide the interface stress jump evenly to both sides of the interface (Φi = 1

2 ). In the
Neumann case, we must put the entire contribution on the side corresponding to the fluid (Φi = 1) since the other rows
will be discarded. The interface stress now corresponds to the region beyond the boundary, so q = σ · n = 0. Eliminating q
in this way corresponds to not having any particular velocity jump to enforce (a will never be used). Practically speaking,
Neumann boundary conditions are implemented by omitting q degrees of freedom corresponding to the Neumann boundary
condition and omitting the corresponding entries of the system. Note that the Dirichlet and Neumann treatments above are
equivalent to the standard finite element treatments of these boundary conditions.

Our treatment of the slip boundary condition takes advantage of our division of q degrees of freedom into normal and
tangential components. Slip is treated like Dirichlet in the normal direction and Neumann in the tangential directions. The
tangential q degrees of freedom, as well as corresponding matrix entries, are omitted. Note that the equation corresponding
to the normal component of q enforces the velocity jump condition in the normal direction ([u] = c), so omitting de-
grees of freedom in this way suffices to encode Dirichlet in the normal direction. The tangential portion requires a slight
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Fig. 6. We use a modified marching cubes table that emits both the usual interface elements (left) as well as a triangulation of the portion of boundary of
the cell in each region (center and right). These extra triangles greatly simplify our integration process.

modification, since (I − nnT )ĥ must be used as the interface stress. As in the Neumann case, Φi = 1 is used in (29). We
demonstrate all three types of boundary conditions in our numerical examples.

Since our implementations of Dirichlet and slip boundary conditions do not eliminate the normal components of q de-
grees of freedom, a Dirichlet or slip boundary condition will not preclude the presence of a null mode. However, a Neumann
boundary condition will prevent the existence of a null mode since its q degrees of freedom are removed.

3.4.5. Practical implementation
The primary difficulty in implementing the proposed method is computing the necessary integrals. Our pressure basis

functions are piecewise constant over MAC cells, but our velocity basis functions are piecewise trilinear over cells whose
corners contain the respective velocity degrees of freedom. Since we will be integrating products of these bases and their
derivatives, we perform our integration over the cells of a doubly-fine grid. Over each doubly-fine cell, these products are
all polynomials. The polynomials being integrated may be different, even discontinuous, across the boundaries between
adjacent doubly-fine cells (even across those contained in the same MAC cell). This is a consequence of the staggering of
the variables.

We represent our regions using level sets (both for the interface and boundary conditions) stored at MAC cell centers.
Since we wish to integrate over doubly-fine cells, we interpolate our level set to populate a doubly-fine node-centered level
set. This representation allows us to compute our interface geometry using marching cubes in 3D (marching squares in 2D)
over the doubly-fine grid. The boundary integrals amount to integrating a polynomial over these triangles. Note that all of
the bases, restricted to one interface element, are polynomials.

The volumetric integrals at first seem rather difficult, particularly in light of the rather complicated regions that occur
with marching cubes. If approached in the right way, however, they are quite manageable. We begin by converting the vol-
ume integral into a surface integral using the divergence theorem as in [1]. This reduces the problem into one of integrating
polynomials of one degree higher over the triangles on the boundary of the cut marching cubes volumes. We augment our
marching cubes table (marching squares table for 2D) to emit these triangles (segments in 2D) on the surface of the cube
in addition to the triangles on the interface itself. See Fig. 6 for an illustration. This enhancement of marching cubes is
straightforward in practice, as most of the work involved is required to implement marching cubes in the first place. It also
greatly simplifies the integration.

The highest degree polynomials we must integrate over cut volumes are of degree six in 3D (degree four in 2D), which
occur for Mx , M y , and M z . These become degree seven polynomials in 3D (degree five in 2D) once the divergence theorem
is applied. The highest degree polynomials we integrate for boundary integrals is three in 3D (two in 2D). We perform all
of these integrations using quadrature rules of high enough order (listed in [3]) to get the integral exactly.

Although solving the linear system (25) is by far the slowest step of our method, we still perform a few simple opti-
mizations when computing the integrals. The first is to precompute the stencils for uncut doubly-fine cells (there will be
eight such integrals required, since each octant of a MAC cell may contribute differently to the final stencil). Additional
integrations are only required for integrating in cut cells or computing boundary integrals. Most cells are not cut and can
simply use a copy of one of these precomputed stencils. For the cells that are cut, we will be computing many integrals over
the same geometry, so we begin by integrating the monomials individually using quadrature rules. With these, integrating
the actual basis polynomials reduces to a simple dot product.

We can also take advantage of the way in which the volume integral was converted into a surface integral using di-
vergence theorem to save even more work. That is we can convert a volume integral over f (x, y, z) into a surface integral
using ∫

Ω

f dV =
∫

∂Ω

g nx dA =
∫

∂Ω

h ny dA =
∫

∂Ω

k nz dA (50)

where we have integrated the polynomial f (x, y, z) to obtain
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g =
∫

f dx, h =
∫

f dy, k =
∫

f dz. (51)

If we choose the x direction as our preferred direction, then nx = 1 along two faces of the cube, and nx = 0 along the other
four. This means we can discard the boundary elements along four of the faces of the cube.

Finally, we only need to compute volume integrals on one side of an interface, since the integrals for the other can be
obtained by subtracting from the integral over the whole cube, which we have precomputed.

3.5. Solving the system

We solve our system using preconditioned MINRES using the same Jacobi-style preconditioner as in [1]. We project out
our nullspace (when we have one) inside the MINRES solver in addition to projecting the right hand side for compatibility,
since we have found this to improve the convergence behavior of the solver. This simple preconditioner we employ sig-
nificantly improves the conditioning of our systems, but in practice the systems remain very slow to solve. We leave the
problem of finding a more effective preconditioner for future work.

3.6. Surface tension

There are many popular options for introducing surface tension into a fluid discretization that are available to us. Since
our discretization has provisions built in for incorporating an interface force f̂ , we take this approach. We begin by com-
puting cellwise normals ni and curvature values κi at MAC cell centers according to

ni = ∇φn+1

‖∇φn+1‖ , H i = Hessian
(
φn+1), κi = nT

i H ini − tr(H i)

‖∇φn+1‖ , (52)

where all derivatives are computed using central differencing. Using these, we can compute estimates for n̂ and for the
curvature κ̂ wherever necessary, by cubic interpolation of ni and κi . Finally, we approximate our surface tension as the
interface force

f̂ = −βκ̂n̂ (53)

where β is the surface tension coefficient. Note that ni and κi are only required near the interface, and reinitialization must
be performed in a wide enough band for the combined central differencing stencil and cubic interpolation stencil.

3.7. Stability

3.7.1. System stability
The final step of our scheme (u� → un+1) applies viscosity and enforces incompressibility. This operation is linear (or

affine if there are forcing terms such as inhomogeneous boundary conditions or surface tension). This system can be ex-
pressed as(

M + S G
G T 0

)(
un+1

λ

)
=

(
Mu�

0

)
, (54)

where M contains the inertial blocks, S contains the viscous blocks, and G contains the pressure and interface stress blocks.
The vector λ contains the p and q degrees of freedom. Non-homogeneous terms on the right hand side are omitted. Note
that the λ degrees of freedom are not state, in that these values can be discarded at the end of the time step. The only
state variables present in this system are velocities.

The matrix S made up of the viscous blocks is symmetric positive semi-definite, since from our discretization w ′ Su
is equal to the inner product

∫
Ω

μ
2 ∇(w + w T ) · ∇(u + uT )dV of the piecewise trilinear functions corresponding to the

vectors u, w . We will substitute S = C T C for the purposes of this analysis, and rewrite our matrix equation as(
M + C T C G

G T 0

)(
un+1

λ

)
=

(
Mu�

0

)
. (55)

Following [67] and letting w = C un+1, we can transform this system to(
C M−1 0

G T M−1 −I

)(
M + C T C G

G T 0

)(
un+1

λ

)
=

(
C M−1 0

G T M−1 −I

)(
Mu�

0

)
, (56)(

C + C M−1C T C C M−1G
G T M−1C T C G T M−1G

)(
un+1

λ

)
=

(
C u�

G T u�

)
, (57)(

I + C M−1C T C M−1G
G T M−1C T G T M−1G

)(
w
λ

)
=

(
C u�

G T u�

)
, (58)
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((
I 0
0 0

)
+

(
C

G T

)
M−1

(
C

G T

)T )(
w
λ

)
=

(
C

G T

)
u�, (59)(

P + K M−1 K T )
z = K u�, (60)

where

P =
(

I 0
0 0

)
, K =

(
C

G T

)
, z =

(
w
λ

)
. (61)

Since both P and K M−1 K T are symmetric positive semi-definite, P + K M−1 K T may have the nullspace component z if and
only if both P P and K M−1 K T do individually. zT P z = 0 implies un+1 = 0, which reduces zT K M−1 K T z = λT G T M−1Gλ.
Since M is symmetric positive definite, we must have Gλ = 0. That is, G has a nullspace. We often do have such a nullspace.
Though this complicates the analysis, we note that we can ignore this nullspace since we will never get a component in it
on the right hand side. In this way, we can solve this system for z.

The next step is to recover un+1 from z, which we do using the momentum equation(
M + C T C

)
un+1 + Gλ = Mu�, (62)

un+1 + M−1C T w + M−1Gλ = u�, (63)

un+1 + M−1 K T z = u�, (64)

un+1 = u� − M−1 K T z. (65)

Finally, the change in kinetic energy due to the update u� → un+1 is

	K E = 1

2

(
un+1)T

Mun+1 − 1

2
u�T Mu� (66)

= 1

2

(
u� − M−1 K T z

)T
M

(
u� − M−1 K T z

) − 1

2
u�T Mu� (67)

= 1

2
zT K M−1 K T z − zT K u� (68)

= 1

2
zT K M−1 K T z − zT (

P + K M−1 K T )
z (69)

= −1

2
zT K M−1 K T z − zT P z (70)

� 0. (71)

Thus we see that this step does not introduce energy into the system.

3.7.2. Time step restriction
Empirically, our method appears to have a stability restriction on the value of the dimensionless quantity 	tμ

ρ	x2 (see

Sections 4.4 and 4.9). This limits the minimum choice for 	t . Since the criterion depends on refinement as 	t
	x2 , convergence

is possible as long as 	t is refined no faster than 	x2. In particular, 	t = k	x and 	t = k	x2 are both suitable refinement
strategies.

It is worth discussing the apparent source of this instability in more detail. In the absence of an interface, no instability
is observed. When an interface (or boundary condition) is present and instability is observed, it starts near the interface.
This in particular suggests that the modified velocity advection scheme proposed is stable. Indeed, the instability is also
observed with the original advection scheme or no advection at all. Similarly, instability is observed with BDF or backward
Euler.

An unusual characteristic of this stability restriction is that 	t must not be chosen too small. To see what may be causing
this, consider a time step in the limit 	t → 0. In this case, advection has no effect, and the viscosity terms vanish. Using
backward Euler eliminates the complications of BDF. The only part of the time integration remaining that has an appreciable
effect is setting up the right hand side and solving the system, which we showed will not increase energy. The source of
the energy increase is the velocity extrapolation used to fill the ghost cells of u� needed for the right hand side. If sufficient
viscosity is present, this added energy is dissipated as it is introduced, and the scheme remains stable. Examining the role
of 	t , μ, and ρ in this system, we can rescale the system so that the only reference to these quantities is through the
expression 	tμ

ρ . This is consistent with the empirical stability criterion suggested by our numerical examples. Noting that

the viscosity blocks are scaled by 1
	x2 relative to the inertial blocks leads to the full criterion 	tμ

ρ	x2 . This value describes the

efficiency with which viscosity is able to damp out energy in our scheme.
To see why extrapolation is able to lead to instability, consider a set of uniformly spaced sample points u1, u2, . . . . The

value u0 is to be computed by extrapolation. If uk = 1 for k � 2 are set to a constant value but u1 = 1 + ε, so that a small
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Fig. 7. Extrapolation amplifies errors. In this case, the ideal solution (black horizontal line) is perturbed by ε at the interface, which is then amplified by
quadratic extrapolation to 3ε and 6ε in the ghost region.

Fig. 8. Errors in the Taylor–Green vortex, Section 4.1, for velocity and pressure (shown log base 10) in L∞ and L2, plotted against resolutions from 16 to
256 by increments of 8 (shown log base 10). The pressure does not start to display convergence until the resolution is high, so separate regressions are
provided for the highest resolutions 128 to 256 to eliminate bias from resolutions below the convergence regime. The estimated orders for velocity when
throwing out the lowest resolutions are 2.01 in L∞ and 2.14 in L2. For pressure, the estimated orders when throwing out the lowest resolutions are 0.82
in L∞ , 1.66 in L2.

error has been made near the interface, then we will compute u0 = 1 + ε with constant extrapolation, u0 = 1 + 2ε with
linear extrapolation, and u0 = 1+3ε with quadratic extrapolation (see Fig. 7). Thus, we see that extrapolation has magnified
the error by a factor greater than one. Solving the system pulls some of this energy from the ghost region inside, where it
is magnified further by extrapolation in the next time step. The above example has a growth factor of 3, though in practice
a value near 1.25 is observed for unstable simulations. Instabilities always exhibit this slow and steady exponential march
to infinity. Using lower order extrapolation decreases the growth rate, but even for constant extrapolation the factor is still
slightly larger than one. This supports the idea that extrapolation is providing the amplification required for instability.

4. Numerical examples

Our method supports a range of boundary conditions and forces. Through a mixture of analytic and more practical tests,
we demonstrate second order accuracy for u in L∞ and L2, second order accuracy for p in L2, and first order accuracy for
p in L∞ . We also investigate the stability characteristics of our method.

4.1. Taylor–Green vortex

The Taylor–Green vortex is a popular analytic accuracy test for single-phase Navier–Stokes. We use a (dimensionless)
domain [0,π ] × [0,π ] in which we confine fluid to the region sin(x) sin(y) � k, where k = 0.2. The fluid has ρ = 1, μ = 1,
and the final time is T = 0.2. The analytic solution is

u = sin(x) cos(y), v = − cos(x) sin(y), p = 1

4
ρ
(
cos(2x) + cos(2y)

)
e−4νt, (72)

where ν = μ
ρ . The velocity field is initialized with the analytic velocity. Velocity and pressure errors along with convergence

order estimates are shown in Fig. 8.
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Fig. 9. Translating Taylor–Green vortex errors, Section 4.2, for velocity and pressure (shown log base 10) plotted against resolutions from 16 to 128 by
increments of 8 (shown log base 10). Regression lines and the corresponding orders shown for L∞ and L2, with separate regressions provided for the
highest resolutions 64 to 128. The estimated orders for velocity when throwing out the lowest resolutions are 1.84 in L∞ and 1.89 in L2. For pressure, the
estimated orders when throwing out the lowest resolutions are 1.18 in L∞ , 1.77 in L2.

Fig. 10. Analytic test I errors in velocity and pressure (shown log base 10), plotted against resolutions from 16 to 128 by increments of 8 (shown log
base 10). Regression lines and the corresponding orders shown for L∞ and L2. Separate regressions are provided for the highest resolutions 64 to 128 to
eliminate bias from earlier resolutions. The estimated orders for velocity when throwing out the lowest resolutions are 2.34 in L∞ and 2.36 in L2. For
pressure, the estimated orders when throwing out the lowest resolutions are 0.86 in L∞ , 1.99 in L2.

4.2. Translating Taylor–Green vortex

We test our method on a problem where two fluids are separated by an interface in the periodic domain [0,2π ]×[0,2π ].
The interface is initially set to be the circle centered at ( 11π

10 ,0) with radius 3π
5 . Each fluid has ρ = 1 and μ = 2, and the

analytic solution for both fluids is given by a translating Taylor–Green vortex:

u = sin(x − 0.2t) cos(y − 0.5t), v = − cos(x − 0.2t) sin(y − 0.5t),

p = 1

4
ρ
(
cos(2x − 0.2t) + cos(2y − 0.5t)

)
e−4νt, (73)

where ν = μ
ρ . As before, the velocity field is initialized with the analytic velocity. Velocity and pressure errors, and estimates

of the convergence order, are shown in Fig. 9.

4.3. Analytic test I

In this analytic test we evolve two fluids, separated by an interface, in the periodic domain [−π,π ] × [−π,π ]. The
interface in this example is the circle x2 + y2 = (0.8π)2. We set an inner boundary at the circle (x − 0.2π)2 + y2 = (0.2π)2,
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Fig. 11. Analytic test II errors in velocity and pressure (shown log base 10), plotted against resolutions from 16 to 128 by increments of 8 (shown log
base 10). Regression lines and the corresponding orders shown for L∞ and L2. Separate regressions are provided for the highest resolutions 64 to 128 to
eliminate bias from earlier resolutions. The estimated orders for velocity when throwing out the lowest resolutions are 1.99 in L∞ and 2.61 in L2. For
pressure, the estimated orders when throwing out the lowest resolutions are 0.90 in L∞ , 1.77 in L2.

on which we apply a Neumann boundary condition. The fluid bounded by the inner and outer circles has ρ− = 1, μ− = 1,
and the outer fluid has ρ+ = 2, μ+ = 3. The fluids are initialized with the analytic velocity and evolved to final time
T = 0.1. The analytic solution is given by

u =
{

0.2 − x x ∈ Ω−,

sin(x) cos(y) otherwise,
v =

{
y x ∈ Ω−,

− cos(x) sin(y) otherwise,

p =
{

0 x ∈ Ω−,
1
4ρ+(cos(2x) + cos(2y))e−4νt otherwise,

(74)

where ν = μ
ρ . Velocity and pressure errors along with convergence order estimates are shown in Fig. 10.

4.4. Analytic test II

We embed the circle x2 + y2 = (0.8π)2 into the domain [−π,π ]×[−π,π ]. A circle (x−0.2π)2 + y2 = (0.2π)2 separates
the larger circle into an inner domain Ω− and an outer domain Ω+ , and a slip boundary condition is enforced along the
boundary of the outer circle. The inner fluid has ρ− = 1, μ− = 1 and the outer fluid has ρ+ = 2, μ+ = 3. The velocity field
is initialized with the analytic velocity and evolved to the final time T = 0.1. The analytic solution is given by

u =
{

0.2 − x x ∈ Ω−,

−y otherwise,
v =

{
y x ∈ Ω−,

x otherwise,
p =

{
0 x ∈ Ω−,

0.5ρ+(x2 + y2) otherwise.
(75)

Velocity and pressure errors along with convergence order estimates are shown in Fig. 11.

4.5. Analytic test II-3D

We examine a three-dimensional analogue of our test from the previous section: The sphere x2 + y2 + z2 = (0.8π)2 is
embedded into the dimensionless domain [−π,π ] × [−π,π ] × [−π,π ]. A shell (x − 0.2π)2 + y2 + z2 = (0.2π)2 separates
the larger sphere into an inner domain Ω− and an outer domain Ω+ . As before, the slip boundary condition is enforced
along the boundary of the outer circle. The inner fluid has ρ− = 1, μ− = 1 and the outer fluid has ρ+ = 2, μ+ = 3. As
in previous examples, the velocity field is initialized with the analytic velocity and evolved to the final time T = 0.1. The
analytic solution is given by

u =
{

0.2 − x x ∈ Ω−,

2z − 3y otherwise,
v =

{
y x ∈ Ω−,

3x − z otherwise,
w =

{−2z x ∈ Ω−,

y − 2x otherwise,

p =
{

0 x ∈ Ω−,

0.5ρ+(x2 + y2) otherwise.

Velocity and pressure errors along with convergence order estimates are shown in Fig. 12.
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Fig. 12. Analytic test II-3D errors in velocity and pressure (shown log base 10), plotted against resolutions from 16 to 96 by increments of 8 (shown log
base 10). Regression lines and the corresponding orders shown for L∞ and L2. Separate regressions are provided for the highest resolutions 48 to 96 to
eliminate bias from earlier resolutions. The estimated orders for velocity when throwing out the lowest resolutions are 1.82 in L∞ and 2.05 in L2. For
pressure, the estimated orders when throwing out the lowest resolutions are 0.87 in L∞ , 1.32 in L2.

Fig. 13. Couette flow errors in velocity (shown log base 10), plotted against resolutions from 16 to 128 by increments of 8 (shown log base 10). Regression
lines and the corresponding orders shown for L∞ and L2. The analytic solution (piecewise linear velocity, constant zero pressure) would often be resolved
exactly by a second order method. In our case, we do observe fourth order velocity convergence on this simple test. Note that the first two resolutions are
too small to resolve the setup and have been omitted from the regression. The pressure errors are below 10−9 in L∞ and L2 for all resolutions and are
limited by the convergence tolerance of our MINRES solver.

4.6. Two-phase Couette flow

We run a two-phase Couette flow test, where two phases are separated by a stationary interface. The phases have
different density and viscosity. The domain is [0,1]× [0,1]. The fluid is confined by vertical no-slip walls at x0 = 0.2 (where
u(x0, y) = (0,1)) and x2 = 0.8 (where u(x2, y) = (0,−1)). Periodic boundary conditions are enforced at the top and bottom
of the domain. The interface is vertical at x1 = 0.5, with phase 0 (ρ− = 1, μ− = 1) occupying 0.2 < x < 0.5 and phase 1
(ρ+ = 2, μ+ = 3) occupying 0.5 < x < 0.8. The analytic solution is u = 0, p = 0, and

v1 = v0μ
−(x2 − x1) + v2μ

+(x1 − x0)

μ−(x2 − x1) + μ+(x1 − x0)
, v =

{
v0 + x−x0

x1−x0
(v1 − v0) x � x1,

v1 + x−x1
x2−x1

(v2 − v1) x > x1.
(76)

The initial velocity is the analytic solution. This test demonstrates that the method correctly (and sharply) handles discon-
tinuities in viscosity. Convergence results are summarized in Fig. 13.

4.7. Parasitic currents

In this test, we check for convergence of parasitic currents in the case of a stationary circle with surface tension. The
fluid domain is [0 m,0.01 m] × [0 m,0.01 m], with periodic boundary conditions and an initially circular interface (center
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Fig. 14. A stationary circle is run with surface tension to test convergence of parasitic currents. Errors in velocity and pressure (y-axis, shown log base 10)
are plotted against resolutions from 16 to 256 by increments of 8 (x-axis, shown log base 10). We estimate the velocity to be order 1.96 in L∞ and 2.04
in L2. For pressure, we obtained 1.13 in L∞ and 1.97 in L2.

Fig. 15. A stationary sphere is run with surface tension to test convergence of parasitic currents. Errors in velocity and pressure (y-axis, shown log base 10)
are plotted against resolutions from 16 to 64 by increments of 8 (x-axis, shown log base 10). We estimate the velocity to be order 1.94 in L∞ and 2.09
in L2. For pressure, we obtained 1.12 in L∞ and 1.87 in L2.

(0.005 m,0.005 m), radius 0.003 m). We simulate glycerin inside the circle (ρ− = 1261 kg m−2, μ− = 1.4746 kg s−1) and
a generic light fluid outside (ρ+ = 1 kg m−2, μ+ = 1 kg s−1, similar in density to air but more viscous). The interface is
evolved with the level set method. Convergence results are shown in Fig. 14.

4.8. Parasitic currents – 3D

This test is a 3D analogue of Section 4.7. The fluid domain is [0 m,0.01 m]×[0 m,0.01 m]×[0 m,0.01 m], with periodic
boundary conditions and an initially spherical interface (center (0.005 m,0.005 m,0.005 m), radius 0.003 m). Glycerin is
inside (ρ− = 1261 kg m−3, μ− = 1.4746 kg m−1 s−1), and a light fluid is outside (ρ+ = 1 kg m−3, μ+ = 1 kg m−1 s−1). The
interface is evolved with the level set method, and the results are shown in Fig. 15.

4.9. Relaxing ellipse

The tests up to this point have been analytic tests. Here we run a relaxing ellipse test similar to the one performed in [1].
Two fluids are separated by an interface in the initial shape of an ellipse. The fluid domain is [−1 m,1 m] × [−1 m,1 m],
with periodic boundary conditions. The ellipse is centered in the domain with major axis 1.4 m and minor axis 0.8 m. The
inside fluid has parameters ρ− = 0.01 kg m−2 and μ− = 1 kg s−1. The outside fluid has parameters ρ+ = 0.02 kg m−2 and
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Table 1
Order of convergence for 2D relaxing ellipse. Note that pressure is too noisy in L∞ to give a meaningful convergence estimate. On the other hand, the
pressure error is transitioning to second in L2. (The transition to second is not merely noise. Noisy L∞ and convergence orders consistent with second
order in L2 were also observed when this simulation was run with different parameters.) This suggests that, while the pressure may be noisy, it is
converging.

Resolutions compared Order (u) Order (p)

L∞ L2 L∞ L2

8 16 32 1.428 1.567 0.990 1.078
16 32 64 2.724 2.948 0.326 1.084
24 48 96 4.178 3.568 0.105 1.317
32 64 128 2.521 2.682 0.216 1.684
48 96 192 2.185 2.074 −0.358 1.638
64 128 256 2.453 2.112 0.457 2.334

Fig. 16. Pressure and interface configuration for the relaxing ellipse of Section 4.9. Dark regions have lower pressure and lighter regions have higher
pressure.

μ+ = 3 kg s−1. The surface tension coefficient is 10 kg m s2. The simulations were run with time step 	t = (0.01 m−1 s)	x
until time T = 0.05 s. Convergence orders are shown in Table 1. Snapshots from the simulation are shown in Fig. 16.

4.10. Relaxing ellipsoid – 3D

This relaxing ellipsoid test is a 3D analogue of Section 4.9. Two fluids are separated by an interface in the initial shape
of an ellipsoid. The fluid domain is [−1 m,1 m] × [−1 m,1 m] × [−1 m,1 m], with periodic boundary conditions. The
ellipsoid is centered in the domain with major and minor axes 1.4 m, 0.8 m, and 0.8 m. The inside fluid has parameters
ρ− = 0.01 kg m−3 and μ− = 1 kg m−1 s−1. The outside fluid has parameters ρ+ = 0.02 kg m−3 and μ+ = 3 kg m−1 s−1. The
surface tension coefficient is 10 kg s2. The simulations were run with time step 	t = (0.01 m−1 s)	x until time T = 0.015 s.
Convergence orders are shown in Table 2.
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Table 2
Order of convergence for 3D relaxing ellipse.

Resolutions compared Order (u) Order (p)

L∞ L2 L∞ L2

8 16 32 2.779 3.012 1.856 2.188
16 32 64 3.521 3.572 0.773 1.646

Fig. 17. Pressure and interface configurations for the four rising bubble simulations described in Section 4.11 at t = 0.0,1.0,2.0, . . . ,9.0,10.0 s. For each
simulation, dark regions correspond to lower pressure and lighter regions have higher pressure.

4.11. Rising bubbles

We used our algorithm to simulate a rising fluid bubble surrounded by fluid of differing viscosity and density. We
assumed a uniform gravitational acceleration equal to g = 9.8, with the fluid densities being ρ− = 1 inside the interface
and ρ+ = 2 outside the interface for all simulations. The interface is an ellipse of major radius a = 0.5 and minor radius
b = 0.2 in a domain [−1,1] × [0,5], and we center it at (0,1). The top and bottom have zero Dirichlet boundary conditions
on the top and bottom, and the sides are periodic. We simulate examples where the inner viscosity μ− = 3 is greater than
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Fig. 18. These plots show the stability of our method on one of our analytic tests. Each point on the (x, y) grid corresponds to a simulation with ρ− = 10x ,
ρ+ = 2, μ+ = 2, 	x = 2π/N , and 	t = 10y . Circles represent stable simulations, and squares represent simulations that were unstable.

Fig. 19. These plots show the stability of our method on the relaxing ellipse with varying parameters. Each point on the (x, y) grid corresponds to a
simulation with ρ− = 10x , ρ+ = 2ρ− , μ+ = 3μ− , 	x = 2/N , and 	t = 10y . Circles represent stable simulations, and squares represent simulations that
were unstable.

the outer viscosity μ+ = 1, and examples where the inner viscosity μ− = 1 is less than the outer viscosity μ+ = 3. These
values are similar to those used in the rising bubble example in [1]. For each of these viscosity value pairs, we simulate a
rising bubble without (Figs. 17(a) and 17(b)) and with (Figs. 17(c) and 17(d)) surface tension. In the simulations of Figs. 17(c)
and 17(d), we use a surface tension force coefficient equal to that used in the other surface tension examples. These results
are qualitatively similar to the rising bubble test in [1], which used the same parameters but periodic boundary conditions
on the top and bottom.

4.12. Stability tests

To examine stability, we consider two different examples: the analytic example in Section 4.4 and the relaxing ellipse
described in Section 4.9. For both examples, we run simulations for a variety of parameters that affect our stability. In
each case, we choose five values of μ− , ten values of ρ− , two values of 	x = 2/N , and ten values of 	t , each sampled
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by powers of two. Each of these 1000 simulations is classified as stable or unstable. A simulation is classified as stable if
it completes without producing velocities larger than 10 (Section 4.4) or 2 (Section 4.9). In practice, the classification was
quite unambiguous most of the time (most simulations that are unstable simply explode). The rather low cutoff is much
smaller than what would normally be considered ‘blowup’, and errs on the side of classifying simulations as unstable which
do not blow up but still have large uncharacteristic variations in velocity.

For both examples, we can demonstrate the stability characteristics of our method as a function of μ, ρ , 	x, and 	t .
For the analytic test in Section 4.4 we vary 	t , ρ , and μ over a range of values, as described in Fig. 18. We also use two
different values of 	x. For this simulation, the transition between stable and unstable occurs at 	tμ

ρ	x2 ≈ 0.2. When this

threshold is reached, instabilities begin to develop at the interface between the two phases. Note that this stability criterion
places a lower bound on 	t . Results are shown in Fig. 18.

For the relaxing ellipse stability test, we use the setup in Section 4.9, sampling ranges of ρ , μ, 	t , and 	x as before. For
this simulation, the transition between stable and unstable occurs at 	tμ

ρ	x2 ≈ 0.1. Instabilities, when they occur, develop at

the interface. Results are shown in Fig. 19.

5. Conclusion

In this work we presented a second order accurate method for the Navier–Stokes equations which can incorporate im-
mersed interfaces, discontinuous fluid properties, and various boundary conditions. We considered examples in which both
the fluid viscosities and densities are discontinuous across the interface, examples implementing each type of boundary
condition listed in (1)–(8), and examples showing many combinations of these boundary conditions interacting. We demon-
strated the ability of our method to handle interface forces by considering examples with surface tension. Our method yields
a symmetric indefinite linear system of equations.

We discussed the two primary limitations of our method. The first limitation of our method, its additional stability
restriction, effectively restricts its use to problems involving low or moderate Reynolds numbers (Re up to about 20 in
practice). The method presented is not suitable for high Reynolds number flows. The second limitation is the KKT system,
for which we currently lack an effective preconditioner. We leave the problem of preconditioning for future work.
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Appendix A. Continuous weak form of implicit equation

Here we derive the continuous weak form of (11) that we discretized in Section 3.4.1. For the purposes of this derivation,
we assume that we have an interface at Γ but no other non-periodic boundaries.

We begin by taking a dot product of both sides of (11) by a test function w , then integrating both sides over Ω\Γ to
get ∫

Ω\Γ
αw · (u − u�

)
dV =

∫
Ω\Γ

w · (∇ · σ + f )dV , (77)

where we have used u = un+1 for conciseness. Integration by parts yields∫
Ω\Γ

w · (∇ · σ)dV =
∫

Ω\Γ
∇ · (w · σ) − ∇w : σ dV = −

∫
Γ

[w · σ ] · n dA −
∫

Ω\Γ
∇w : σ dV , (78)

where n is the outward normal from Ω− and [w] = w+ − w− denotes the jump in w across the interface. Then,∫
Ω\Γ

αw · u dV +
∫

Ω\Γ
∇w : σ dV +

∫
Γ

[w · σ ] · n dA =
∫

Ω\Γ
αw · u� dV +

∫
Ω\Γ

w · f dV . (79)

Utilizing symmetry,∫
Ω\Γ

∇w : σ dV =
∫

Ω\Γ
∇w : (μ(∇u + ∇uT ) − p I

)
dV (80)

=
∫

μ∇w : (∇u + ∇uT )
dV −

∫
∇ · w p dV (81)
Ω\Γ Ω\Γ
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=
∫

Ω\Γ

μ

2

(∇w + ∇w T ) : (∇u + ∇uT )
dV −

∫
Ω\Γ

∇ · w p dV . (82)

Using the identity [w · σ ] = [w] · σ + w · [σ ], where σ = 1
2 (σ+ + σ−) and w = 1

2 (w+ + w−),∫
Γ

[w · σ ] · n dA =
∫
Γ

[w] · σ · n dA +
∫
Γ

w · [σ ] · n dA =
∫
Γ

[w] · q dA +
∫
Γ

w · f̂ dA, (83)

where f̂ = [σ ] · n is known but q = σ · n must be treated as a degree of freedom since its value will not in general be
known. Combining these with (79) yields∫

Ω\Γ
αw · u dV +

∫
Ω\Γ

μ

2

(∇w + ∇w T ) : (∇u + ∇uT )
dV −

∫
Ω\Γ

p∇ · w dV +
∫
Γ

[w] · q dA

=
∫

Ω\Γ
αw · u� dV +

∫
Ω\Γ

w · f dV +
∫
Γ

w · f̂ . (84)

Introducing test functions λ and v , the weak forms for (2) and (3) are∫
Ω\Γ

λ∇ · u dV = 0 (85)

∫
Γ

v · [u]dA =
∫
Γ

v · ai dA. (86)

Eqs. (84)–(86) constitute our weak form of the Navier–Stokes problem.
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