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Figure 1: (a) Slice through the center of hippo octree. (b) Simulated hippo character. (c) Slice through center of Spike octree. (d) Simulated
Spike character.

Abstract

We present an efficient method for the physical simulation of soft
tissue deformation for animated characters using octrees. Previous
work on efficient elasticity simulation relies on the regular structure
of a uniform grid discretization. However, representing the compli-
cated boundaries of animated characters requires a high resolution
grid, which consumes large amounts of memory and is computa-
tionally expensive. By refining an octree around the surface of
the character, our memory usage and simulation times grow only
quadratically with the inverse of the cell size, compared to cubic
growth for a uniform grid. We realize memory savings of 18x
and a speedup of 1.7x over a uniform grid with the same bound-
ary resolution on one production example. Moreover, we show that
we are able to simulate complex geometry that is infeasible with a
uniform grid due to memory usage that would exceed our method
by 50x or more. To achieve this we derive a matrix-free geomet-
ric multigrid method for the solution of linear systems resulting
from an octree discretization of the equations of corotational linear
elasticity. We also demonstrate the high parallel scalability of our
optimized shared-memory CPU implementation in a fully-featured
production-level system.

Keywords: simulation, physically based animation, skinning,
corotated elasticity, finite element method, octree, multigrid
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1 Introduction

Physical simulation is now standard in computer animated feature
films. However, simulation on animated characters is often con-
fined to hair and clothing, and is less frequently used for the body
of the character itself. Simulation of the deformation and dynam-
ics of soft tissues such as skin, muscles and fat is more common
in visual effects, where realism is paramount [Clutterbuck and Ja-
cobs 2010; Comer et al. 2015; McLaughlin et al. 2011; Schutz et al.
2016]. In animated feature films, flesh simulation has been used in
situations where it is impossible to achieve a satisfactory aesthetic
result by other means, typically on a small number of characters

or shots per film [Irving et al. 2008; Kautzman et al. 2012; Kautz-
man et al. 2016]. Although flesh simulation has recently been used
on a larger scale in animated feature films [Milne et al. 2016b], it
is still standard industry practice to use non-simulation-based tech-
niques for skin deformation, such as dual-quaternion skinning [Ka-
van et al. 2008] and pose-space deformation [Lewis et al. 2000].
However, there is a growing demand for the rich organic motion
that simulation provides.

The finite element method (FEM) is the method of choice for sim-
ulating elastic materials such as flesh. Until recently, running FEM
flesh simulations on every character in every shot of an animated
feature film has been considered too expensive to be feasible. A
method for efficient elasticity simulation for animated characters
was presented by [McAdams et al. 2011]. Their method embeds
the character in a hexahedral lattice. The uniform grid structure is
computationally efficient, and allows the use of a matrix-free geo-
metric multigrid method with a direct coarse grid discretization for
solving the resulting equations, further improving performance.

However, a uniform grid is unsatisfactory in two aspects. In or-
der to realize the benefits of the simple and efficient element and
node indexing permitted by a uniform grid, it must be stored as a
3D array. Embedding the character in such a box-shaped domain
wastes memory, as large portions of the grid are empty. In addition,
the grid cells must be sufficiently small to resolve the boundary of
the character accurately. Using such small cells over the entire do-
main may be prohibitively expensive in terms of memory usage and
computation time.

To address both of these issues, we propose to extend the method
of McAdams et al. to octrees. We embed the character in an incom-
plete octree, which is refined around the boundary. For efficiency,
we use a linear, pointerless octree encoding. Our geometric multi-
grid method on octrees is completely matrix-free and uses a direct
coarse grid discretization. This requires less than one quarter of the
memory as multigrid methods based on Galerkin coarsening, which
must store a sparse matrix on each multigrid level [Milne 2015].
Since memory bandwidth is a bottleneck in most sparse matrix
computations [Georgii and Westermann 2010], this can also signif-
icantly impact speed. Our method has the potential to enable the
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widespread use of flesh simulation on characters in animated fea-
ture films.

The rest of this paper is organized as follows. After discussing
related work, we describe in section 3 our approach to the fun-
damental challenge of applying the FEM to octrees, which is the
existence of “hanging nodes”. In section 4 we review corotational
linear elasticity along with the stabilized one-point quadrature we
use. We describe our linear octree data structure in section 5 and
octree construction in section 6. In section 7, we specify the com-
ponents of our matrix-free geometric multigrid method, including
octree coarsening, restriction and prolongation, and the formula-
tion of the coarse grid operator. We detail how we compute the
diagonal part of the stiffness matrix, which is needed for the multi-
grid smoother but not available in a matrix-free method. Section 8
discusses the incorporation of constraints and collisions. We give
some details of our parallel implementation in section 9. Finally,
we present results in section 10 and conclude.

2 Related Work

More details on some aspects of this work can be found in non-
peer-reviewed prepublications by the authors [Milne 2015; Milne
et al. 2016a].

[McAdams et al. 2011] presented a discretization of corotational
elasticity on a uniform hexahedral lattice with a stabilized one-point
quadrature. This is more efficient than the standard 8-point Gaus-
sian quadrature, while avoiding the unstable hourglass modes of a
naive one-point quadrature. We show that this technique extends
naturally to octrees. [Patterson et al. 2012] extended the stabiliza-
tion technique of [McAdams et al. 2011] to constitutive models
other than corotational linear elasticity, but we do not pursue that
further in this paper.

[Braess 1986; McAdams et al. 2010; Sampath et al. 2008] used
multigrid as a preconditioner to the conjugate gradient method (CG)
instead of as stand-alone solver. This is advantageous because it
allows the use of a simple multigrid method, while a more expen-
sive and sophisticated multigrid method may be required for good
convergence as a stand-alone solver for some problems. We inten-
tionally use a simplified matrix-free geometric method because it
is highly efficient. Accordingly, we have found that using multi-
grid as a preconditioner gives faster convergence in our application.
Slightly improved convergence rates were also observed by [Dick
et al. 2011], although they found that the benefit was not worth
the increased cost. In contrast, [Sundar et al. 2014] found that us-
ing multigrid as a preconditioner converged significantly faster than
multigrid alone.

[Seiler et al. 2010; Dick et al. 2011] solved corotational linear elas-
ticity on octrees using a warped stiffness formulation. [Seiler et al.
2010] assembled a global stiffness matrix, which they solved with
preconditioned CG. [Dick et al. 2011] used a geometric multigrid
method with Galerkin coarsening. Their method is matrix-free in
the sense that they did not assemble a global stiffness matrix, but
the use of Galerkin coarsening means that the method can only be
fully matrix-free at the finest multigrid level. On the coarser levels,
they stored per-element stiffness matrices.

Many fast techniques for soft body simulation have been proposed
for interactive applications, often targeting GPU implementations.
Projective dynamics [Bouaziz et al. 2014] is a popular method that
has been applied to character deformation [Lin et al. 2016]. [Fratar-
cangeli et al. 2016] presented a randomized Gauss-Seidel solver
suitable for implementation of projective dynamics on the GPU.
[Wang and Yang 2016] presented a gradient descent method that
requires no dot products.

Figure 2: A 2D slice through an octree refined around the boundary
of an embedded elastic object.

Others have proposed to speed up FEM simulations by reducing the
number of degrees of freedom. [Mitchell et al. 2016] aggregated
elements into macroblocks. [Torres et al. 2016] introduced a novel
coarsening method for heterogeneous materials.

We use a linear octree data structure with octants sorted by Mor-
ton code as in [Sundar et al. 2008; Sampath et al. 2008; Sundar
et al. 2007; Sampath and Biros 2010]. While these works used
complete octrees, we embed the character in an incomplete octree
which omits the empty cells. [Flaig and Arbenz 2012] used a lin-
ear data structure with a uniform cell size that omitted empty cells.
[Dick et al. 2011] used pointer-based incomplete octrees. We use
the efficient algorithm of [Chan 2002] to compare Morton codes.

Octrees contain “hanging nodes” or “T-vertices” in the middle of
edges and faces where smaller elements are adjacent to larger el-
ements. These must be carefully handled in order to enforce the
continuity of the solution between elements of different sizes. We
use the method proposed by [Wang 2000] for 2D and extended by
[Sundar et al. 2007] to 3D. We use the formulation in [Dick et al.
2011], where unknowns at hanging nodes are substituted with in-
terpolated values from the adjacent nonhanging nodes.

[Sundar et al. 2007; Sundar et al. 2008; Burstedde et al. 2011; Isaac
et al. 2012] developed methods for constructing, balancing, and per-
forming finite element computations on linear octrees in parallel.
[Sampath et al. 2008; Sampath and Biros 2010; Flaig and Arbenz
2012] presented parallel matrix-free geometric multigrid methods
on linear octrees. We draw heavily on all of this work. These papers
solved linear elasticity problems only, while we solve corotational
linear elasticity to handle large deformations.

3 Finite Element Method on Octrees

In this section, we describe our approach to applying the FEM to
octrees. Although we simulate 3D elasticity, figures are in 2D for
clarity. We begin by introducing some notation. The domain of the
elastic object is Ω ⊂ R3. Undeformed material points are denoted
X = (X(1), X(2), X(3))T . The deformation function φ : Ω ×
[0,∞)→ R3 maps each material pointX at time t to its deformed
location x = φ(X, t).

3.1 Discretization

We discretize the domain Ω into regular hexahedra. In an octree,
hexahedral elements are selectively and recursively refined into 8
children (figure 2). Compared to unstructured adaptive discretiza-
tions, octrees retain much of the simplicity and efficiency of regular
grids. However, octrees contain “hanging nodes” where elements of
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(a) (b)

Figure 3: 2D slice through octrees with hanging nodes in red. (a)
Unbalanced octree. Hanging nodes violating the 2:1 rule are cir-
cled. (b) The octree has been 2:1 balanced by splitting the largest
element.

(a) (b)

Figure 4: Exploded view of adjacent elements of different sizes.
(a) Unmodified smaller element has a hanging node. (b) Modified
element with an empty circle indicating the hanging node has been
removed as a degree of freedom and replaced with a node from the
adjacent larger element.

different sizes meet. Properly handling hanging nodes is the biggest
challenge of using an octree discretization.

We require our octrees to be “2:1 balanced” (figure 3). This means
that the ratio of the edge lengths of adjacent elements may not ex-
ceed 2:1. Limiting the rate of mesh gradation improves the mesh
quality and the convergence of the FEM. It also implies that each
edge or face may have at most one hanging node, which limits the
number of cases that must be considered and simplifies many algo-
rithms.

The domain of element e is Ωe, its edge length is h and its volume
is Ve = h3. Each element has 8 nodes at the corners, which we
call “primary nodes” to distinguish them from other nodes to be in-
troduced later. The undeformed position of the primary node a is
Xa and the deformed position is xa. Inside the element, the de-
formation is interpolated using trilinear shape functions. The “un-
modified” shape functionNa has a value of 1 at the primary node a
and a value of 0 at all other primary nodes. In order to express the
shape functions in the same form on each element, we parameter-
ize the elements by ξ = (ξ(1), ξ(2), ξ(3))T ∈ [0, 1]3. The deformed
position of a point in an element is

x(ξ) =
∑
a

xaNa(ξ). (1)

The deformation gradient F , ∂x/∂X at a point in an element is

Fij(ξ) =
∂x(i)

∂X(j)

∣∣∣∣
ξ

=
1

h

∂x(i)

∂ξ(j)

∣∣∣∣
ξ

=
1

h

∑
a

x(i)a
∂Na
∂ξ(j)

∣∣∣∣∣
ξ

. (2)

3.2 Element Modification

At the location of a hanging node, the larger element has no de-
grees of freedom (figure 4a) and the deformation is interpolated us-
ing the element’s shape functions. But the interpolated value may
not match the value at the hanging node of the smaller element. To
enforce continuity, we follow the approach of [Wang 2000; Sun-
dar et al. 2007; Dick et al. 2011] and modify elements containing

hanging nodes (figure 4b). The hanging node is not an independent
degree of freedom. Instead, the hanging node points to a nonhang-
ing node on the adjacent larger element (figure 5). This has the
effect of modifying the shape functions on the element containing
the hanging node (figure 6).

Accordingly, each element has two sets of nodes associated with
it. The 8 “primary nodes” at the corners of the unmodified element
may or may not be hanging. Each primary node a of element e has
an associated nonhanging node b = Ce(a) on the modified element,
which we call the “conforming node”. We use the parameterization
ξ ∈ [0, 1]3 for the cubic region bounded by the primary nodes.
At the conforming nodes, ξ may have values outside of the range
[0, 1]3. The “modified” shape function Ñb has a value of 1 at the
associated conforming node and a value of 0 at all other conforming
nodes. Both Na and Ñb are trilinear functions.

We prefer to work with the primary nodes and unmodified shape
functions because the formulas have the same form on all elements.
We can derive the relationship between the modified and unmodi-
fied shape functions by enforcing continuity at the primary nodes.
Let [x̃b] be the deformed position of the conforming nodes, and
[xa] be the interpolated values at the primary nodes. Let ξa be the
parameter of the primary node a. We define the 8×8 matrixW by

Wab = Ñb(ξa).

Multiplication by W effectively implements a gather operation,
while multiplication by W T implements the corresponding scat-
ter operation. Using this,

xa = x(ξa) =
∑
b

x̃bÑb(ξa) =
∑
b

Wabx̃b.

This allows us to use formulas written in terms of primary nodes,
such as (2) for the deformation gradient, without modification.
Many of the weights are zero or one, so rather than computing W
and implementing the full summation, we store a compact repre-
sentation of the hanging node configuration of the element.

We can write the deformed position at a point in the element in
terms of both the modified and unmodified shape functions

x(ξ) =
∑
b

x̃bÑb(ξ)

=
∑
a

xaNa(ξ) =
∑
a,b

Wabx̃bNa(ξ).

(a) (b)

Figure 5: A larger element surrounded by smaller elements. Non-
hanging nodes are shown in blue. Hanging nodes are shown in
black with arrows pointing to their nonhanging node. (a) A small
element with 2 edge-hanging and 1 face-hanging nodes. (b) 4 small
elements with 4 edge-hanging and 1 face-hanging nodes. Note that
the same hanging node on different elements points to different non-
hanging nodes.
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Figure 6: (a) Unmodified shape functions have different values at
the hanging node. (b) The hanging node has been removed as a
degree of freedom from the smaller element and replaced with an
adjacent node on the larger element. The shape function of the
smaller element has been modified accordingly.

Since we require this to hold identically for all values of x̃b,

Ñb(ξ) =
∑
a

WabNa(ξ).

Thus the values of the modified shape functions can be computed
from the unmodified shape functions usingW T .

We compute forces at the primary nodes and distribute them to the
conforming nodes. The force on the primary node a due to an en-
ergy E is

f (i)
a = − ∂E

∂x
(i)
a

.

The force on the conforming node b due to E is

f̃
(i)
b = − ∂E

∂x̃
(i)
b

= −
∑
a

∂E

∂x
(i)
a

∂x
(i)
a

∂x̃
(i)
b

=
∑
a

f (i)
a

∂

∂x̃
(i)
b

(∑
d

Wadx̃
(i)
d

)
=
∑
a

f (i)
a

∑
d

Wadδbd =
∑
a

Wabf
(i)
a .

Therefore we distribute forces at the primary nodes to the conform-
ing nodes usingW T .

4 Corotational Linear Elasticity

We follow the approach of [McAdams et al. 2011] to corotational
linear elasticity and summarize some relevant results here. Using
their optimized singular value decomposition (SVD) algorithm, we
decompose the deformation gradient as F = UΣV T , where U
and V are rotation matrices andΣ is diagonal. From the SVD, we
form the polar decomposition F = RS, where R = UV T is a
rotation matrix and S = V ΣV T is a symmetric matrix.

4.1 Stabilized Energy and Forces

The total deformation energy is found by integrating the energy
density function Ψ over the domain. We use an efficient stabilized
one-point quadrature which splits Ψ = Ψ∆ + Ψaux into two parts,

Ψ∆(F ) = µ‖F ‖2F

Ψaux(F ) = −2µtr(S) + µ‖I‖2F +
λ

2
tr2(S − I),

where µ and λ are the Lamé parameters. The “auxiliary” part Ψaux
is integrated with a one-point quadrature, while a different rule is
used for the “Laplacian” part Ψ∆.

This induces a splitting on the 1st Piola-Kirchhoff stress tensor
P , ∂Ψ/∂F = P∆ + Paux,

P∆(F ) = 2µF

Paux(F ) = (−2µ+ λtr(S − I))R.

The deformation energy Ee = Ee∆ + Eeaux of a single element is
found by integrating the energy density over the element,

Ee∆ = Ve

∫
[0,1]3

Ψ∆(F (ξ)) dξ

Eeaux = Ve

∫
[0,1]3

Ψaux(F (ξ)) dξ.

4.1.1 Auxiliary Part

We approximate the integral forEeaux using a single quadrature point
at the center of the element, ξe = (1/2, 1/2, 1/2)T . This gives
Eeaux ≈ VeΨaux(F

e), where F e = F (ξe).

To compute F e from (2) , we define Ge to be the 3 × 8 matrix of
unmodified shape function derivatives evaluated at the center of the
element

Geia =
∂Na
∂X(i)

∣∣∣∣
ξe

=
1

h

∂Na
∂ξ(i)

∣∣∣∣
ξe

.

This is a different way to arrive at the same value for Ge given by
[McAdams et al. 2011]. Our interpretation ofGe in terms of shape
functions allows us to rigorously extend their method to octrees.

The auxiliary part of the force on the primary node a due to element
e is

f (i)
aux a = −∂E

e
aux

∂x
(i)
a

= −Ve[Paux(F
e)Ge]ia. (3)

4.1.2 Laplacian Part

The Laplacian part of the force on the primary node a due to ele-
ment e is linear in x

f
(i)
∆a = −∂Ee∆

∂x
(i)
a

= −
∑
c

K̊∆acx
(i)
c , (4)

where

K̊∆ac =
2µVe
h2

∑
k

(∫
[0,1]3

∂Na
∂ξ(k)

∂Nc
∂ξ(k)

dξ

)
. (5)

We use a stabilized quadrature scheme to approximate the integrals.
We observe that ∂Na/∂ξ(k) and ∂Nc/∂ξ(k) are bilinear polynomi-
als that are constant in ξ(k). We use quadrature points with equal
weights of 1/4 in the centers of the 4 edges of the cubic element
where ξ(k) varies and the other two coordinates are fixed at either
0 or 1. ∂Na/∂ξ(k) is nonzero along only 1 of these 4 edges, and
its value is ±1. The same holds for ∂Nc/∂ξ(k). There are only
two combinations of a and c for which they are both nonzero. For
the case a = c, their product is 1, and for the other it is −1. As a
result, K̊∆ is proportional to the Laplacian matrix for the element
e, justifying the terminology “Laplacian part”. Instead of forming
the matrix, we compute f∆ directly as the Laplacian of x.
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Figure 7: Labeling of the nodes of a hexahedral element in Morton
order.

4.2 Force Differentials

We solve either the quasistatic elasticity problem or dynamics using
implicit integration. In either case, we solve the nonlinear system
of equations by generating a series of linearizations using Newton’s
method. The stiffness matrixK is

K(i)(j)
ac = −∂f

(i)
a

∂x
(j)
c

The force differential δf induced by the displacement δx is

δf (i)
a =

∑
cj

∂f
(i)
a

∂x
(j)
c

δx(j)c = −
∑
cj

K(i)(j)
ac δx(j)c .

We compute force differentials using a matrix-free method that
avoids forming the stiffness matrixK.

For the auxiliary part of the force, we take the differential of (3)

δf (j)
aux a = −Ve[δPaux(F

e, δF e)Ge]ja,

where

δPaux(F , δF ) = λtr(RT δF )R+ {λtr(S − I)− 2µ} δR.

As in [McAdams et al. 2011], we use the exact differential of the
rotation, which is more robust than the warped stiffness formulation
of corotational linear elasticity. This is particularly important for
the large deformations typical in character skinning applications.
The differential of the rotation is

δR = R
[
E
(

(tr(S)I − S)−1
(
E :
(
RT δF

)))]
.

The Laplacian part of the force f∆ is proportional to the Laplacian
of x. Similarly, we compute δf∆ by evaluating the Laplacian of
δx.

5 Linear Octrees

Octrees are commonly represented with a pointer-based tree data
structure in which the root of the tree has pointers to its 8 chil-
dren, which in turn have pointers to their children, until reaching
the finest octants at the leaves of the tree. In contrast, we use a lin-
ear octree [Sundar et al. 2007]. In this representation, only an array
of the leaf octants is stored. The intermediate levels of the tree are
not stored, and there are no pointers to children or parents. This
extra information is either not needed or can be inferred. We use

incomplete linear octrees, which means that empty octants are not
stored.

We conceptually discretize space using a uniform background grid
that represents the finest level of the octree. The local primary node
number 1 (figure 7) of an octant is called its “anchor”. An octant
is uniquely identified by the integer coordinates of its anchor node
and its height in the octree.

The same octant data structure represents both an element and its
anchor node, with two exceptions. If an element’s anchor node is
hanging, then the octant represents only an element, and not a con-
forming node. Conversely, there are some nodes on the boundary
that are not the anchor of any element.

Each of the 3 integer coordinates of the anchor is stored in 2 bytes,
and the height in 1 byte. This allows a resolution of up to 65,536 oc-
tants in each dimension and 256 levels in the octree, which is more
than sufficient for character simulation. We store an additional byte
in each octant that contains flags. Two of these bits indicate if an
octant represents an element, a node or both. Thus the total octant
data structure fits in 8 bytes, and a single array of octants is used to
represent both the elements and nodes. This representation is very
compact compared to a pointer-based octree.

The array of octants is stored in the order of a space-filling Z-shaped
curve by sorting the octants by the “Morton code” of their anchor.
The Morton code can be constructed by interleaving the bits of the
coordinates of the anchor in the order znynxn . . . z0y0x0. How-
ever, it is possible to efficiently compare coordinates according to
their Morton code without actually performing this interleaving op-
eration, by using a bitwise exclusive-or [Chan 2002]. Other op-
erations such as calculating parents, children and neighbors of oc-
tants can also be implemented efficiently with arithmetic and bit-
wise logic and shift operations [Burstedde et al. 2011].

We store additional information in separate arrays outside of the oc-
tant data structure. An array of 1 byte per octant contains flags indi-
cating whether each of the 8 primary nodes of the octant is hanging.
An array of 8 integers per octant contains the indices of the ele-
ment’s 8 conforming nodes in the array of octants. For octants that
represent boundary nodes instead of elements, these indices have a
different meaning. Instead, we store the index of each element that
contains the boundary node. The total number of octants is lim-
ited only by the range of the indices, which is over 4 × 109 for a
4-byte unsigned integer. Since so many octants would exhaust the
memory of a typical workstation, this is not a limitation in practice.
Additional per-node and per-element data, such as deformed posi-
tions, deformation gradients, velocities, forces, masses and Lamé
parameters are stored in their own arrays.

6 Octree Construction

The input to our simulator is triangle meshes for the elastic objects
to be simulated and the bones that they are constrained to. For
each triangle, we generate a list of octants at the finest level of the
octree that overlap the triangle. We then sort this array of octants
in Morton order. We complete the octree in a bottom-up manner in
parallel as in [Sundar et al. 2008] by iterating over the array. For
each pair of fine octants, we generate the coarsest possible list of
octants that fills the space between them in Morton order. After the
initial octree is constructed, we 2:1 balance it.

We classify each octant as inside or outside of the elastic objects.
All fine octants generated during rasterization are marked as inside.
We mark the remaining octants as inside if their center is inside the
triangle mesh. We discard the exterior octants, leaving an incom-
plete linear octree.
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We then add the boundary nodes to the octree. For each octant, we
search for each of its primary nodes in the array of octants. Since
the array of octants is sorted in Morton order, this can be done ef-
ficiently using a binary search. If the primary node is not found, it
may be a hanging node. We then search for a neighbor octant one
level coarser. If it is still not found, then the node is on the boundary
and a new octant is added to the octree to represent the boundary
node. After all of the boundary nodes have been added, the array of
octants is sorted a final time.

After the octree is fully constructed, we determine whether the an-
chor node of each octant is hanging, again by performing searches
for neighbors. We compute the global indices of the conforming
nodes of each element with more searches.

7 Geometric Multigrid Preconditioner

At each step of Newton’s method, we solve the linearized system
using geometric multigrid as a preconditioner to CG. Describing
a particular multigrid method requires specifying the cycle type,
smoother type, number of smoothing iterations, restriction and pro-
longation operators, coarse grid operator and the solver on the
coarsest level. We use one multigrid V-Cycle, with one presmoot-
ing and one postsmoothing iteration on each level. We use damped
Jacobi for smoothing and also as the solver on the coarsest level,
because it parallelizes well. We typically use a damping coefficient
of 0.3. We use linear interpolation for the prolongation operator.
Our restriction operator is the transpose of the prolongation oper-
ator. We form the coarse grid operator using a direct coarse grid
discretization, by re-discretizing the problem on a coarsened octree.

CG requires the system matrix to be symmetric positive definite.
The stiffness matrixK is the Hessian of the energy, so it is symmet-
ric and will be positive definite at the value of x that minimizes the
energy. However, during Newton’s method, we must evaluate force
differentials at other values of x, where K may not be positive
definite. In order to use CG, we modify K to make it positive def-
inite. This corresponds to a modified Newton method. We use the
“indefiniteness correction” algorithm of [McAdams et al. 2011] for
computing δPaux (algorithm 1). This algorithm enforces the posi-
tive definiteness of the stiffness matrix without explicitly forming
it, allowing our method to remain matrix-free. In order to be a valid
preconditioner to CG, our multigrid method must be a symmetric
positive definite linear operator. Conditions under which this holds
are given in [Tatebe 1993], and our choices of smoother, restriction
and prolongation operators and coarse grid solver fulfill these con-
ditions. Below we describe several aspects of our multigrid method
in more detail.

7.1 Octree Coarsening

We generate a coarse octree from a fine octree by looping over all
of the fine elements. For each fine octant, we compute its parent
octant. If the only descendants of the parent present in the octree
are its immediate children, we replace the children with the parent.
Because we use incomplete octrees, not all 8 of the children may be
present. This results in the domain growing as the octree is coars-
ened. Our coarsening is more aggressive than methods which only
coarsen the leaves of the octree at each multigrid level.

Even if the fine octree is 2:1 balanced, the coarse octree may not
be and must be balanced again. Balancing may re-introduce some
finer octants that were coarsened. Due to the way the domain grows
during coarsening, some of the finer octants generated during bal-
ancing may not be present in the finer octree. These are removed
from the coarse octree after balancing.

Algorithm 1 Computation of the stress differential corresponding
to the auxiliary energy term Ψaux. Fixed to guarantee definiteness.

1: procedure COMPUTELAUX(inputΣ, V , µ, λ)
2: LDaux ← {λtr(Σ − I)− 2µ} {tr(Σ)I −Σ}−1

3: Clamp diagonal elements of LDaux to a minimum value
of (−µ) . Term Ψ∆ will boost this eigenvalue by µ

4: Laux ← V LDauxV
T

5: return Laux
6: end procedure
7: procedure DPAUXDEFINITEFIX(input δF ,R, Laux)
8: δF̂sym ← SYMMETRICPART(RT δF )
9: δF̂skew ← SKEWSYMMETRICPART(RT δF )

10: δP̂sym,aux ← λtr(δF̂sym)I

11: δP̂skew,aux ← E
{
Laux

(
E : δF̂skew

)}
12: δPaux ← R

(
δP̂sym,aux + δP̂skew,aux

)
13: return δPaux
14: end procedure

7.2 Restriction and Prolongation

Our restriction and prolongation operators are the transpose of one
another. We precompute the weights. We store an array of integers
that maps each fine node to a coarse element that contains it. We
store 8 weights per fine node, which are the weights of the fine
node with respect to the conforming nodes of the coarse element
that contains it. We build these arrays by looping over the arrays of
coarse and fine octants simultaneously, taking advantage of the fact
that they are sorted in Morton order.

For each coarse element, we loop through all of the fine elements
that are contained in it. For each fine element, if the anchor node
is not hanging, we compute its weights. For every boundary node
of the fine element, we compute its weights if this is the first fine
element that contains it.

In order to compute the weights for a fine node, we first compute its
trilinear coordinates ξ ∈ [0, 1]3 with respect to the primary nodes
of the coarse element. We then convert these to weights with respect
to the conforming nodes of the coarse element by usingW T on the
coarse octree.

For both restriction and prolongation, we always loop over the fine
nodes. This ensures that the operations are the transpose of one
another. It is also simpler than looping over the coarse elements,
because each fine node is embedded in exactly one coarse element,
while each coarse element may have many embedded fine nodes.

7.3 Coarse Grid Operator

We form the coarse grid operator using a direct coarse grid dis-
cretization, rather than Galerkin coarsening. In addition to coarsen-
ing the octree as described above, we must also coarsen all of the
information necessary to be able to compute force differentials on
the coarsened octree. To coarsen the Lamé parameters, we simply
average the Lamé parameters of the 8 child elements, substituting 0
for any missing children. To coarsen the nodal masses, we use the
same weights as the restriction operator.

For a hyperelastic material, the energy density function Ψ does not
depend directly on the deformed positions, but is a function of the
strain only. Therefore, as observed in [McAdams et al. 2011], we
do not need to coarsen the positions, but can coarsen only the defor-
mation gradient F . This is important because, due to our use of an
incomplete octree, the domain grows as it is coarsened. Coarsening

6
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the deformed nodal positions would require extrapolating the posi-
tions outside of the original domain, which McAdams et al. found
to be unstable. They proposed coarsening the deformation gradi-
ent using a weighted average. We have found that a simple average
works just as well. We coarsen the deformation gradient by averag-
ing the deformation gradient of all of the existing children. This is
in contrast to coarsening the Lamé parameters, where we always av-
erage over all 8 children, substituting 0 for missing children. Once
we have the coarsened material properties and deformation gradi-
ent, we can compute force differentials on the coarse octrees in a
matrix-free fashion in exactly the same way as on the finest octree.

7.4 The Diagonal of the Stiffness Matrix

Since we never form the stiffness matrix explicitly, the diagonal
of the stiffness matrix needed for damped Jacobi smoothing is not
readily available. For corotational linear elasticity, the stiffness
matrix changes every Newton step and can not be precomputed.
Nonetheless, its diagonal part can be computed efficiently. Details
of how to compute the diagonal of the stiffness matrix for a uni-
form grid discretization were given in the technical notes accompa-
nying [McAdams et al. 2011]. Below we present an extension of
this computation to octrees. We follow the same general approach,
but several simplifying assumptions do not apply to octrees due to
the need to modify the shape functions for hanging nodes. For a
detailed derivation of these results, see [Milne 2015].

We compute the diagonal entry d̃ = −∂f̃ (i)
b /∂x̃

(i)
b of the element

stiffness matrix corresponding to component i of the conforming
node b. It is not possible to compute the diagonal of the stiffness
matrix with respect to the conforming nodes using only the diagonal
of the stiffness matrix with respect to the primary nodes. The off-
diagonal entries of the latter contribute the the diagonal entries of
the former. Therefore, we derive equations for the diagonal of the
stiffness matrix in terms of the modified shape functions. We split
d̃ = d̃∆ + d̃aux into the Laplacian and auxiliary parts and calculate
them separately.

7.4.1 Auxiliary Part

We define G̃e to be the 3 × 8 matrix of modified shape function
derivatives evaluated at the center of the element

G̃eib =
∂Ñb
∂X(i)

∣∣∣∣
ξe

=
∑
a

Wab
∂Na
∂X(i)

∣∣∣∣
ξe

=
∑
a

WabG
e
ia.

Let g̃ be column b of G̃e and rT be row i of Re. Let Laux be the
matrix computed in algorithm 1 for the indefiniteness correction of
δPaux. Then

d̃aux = Ve
(
λ(rT g̃)2 + (g̃ × r)TLaux(g̃ × r)

)
.

7.4.2 Laplacian Part

For a uniform grid, the diagonal entries of the Laplacian part of the
stiffness matrix are all equal to a constant value. For octrees, these
entries are no longer all equal. However, they are constant and can
be precomputed. Writing (4) and (5) in terms of the conforming
nodes instead of the primary nodes leads to

d̃∆ =
∂2Ee∆

∂x̃
(i)2
b

=
2µVe
h2

∑
k

(∫
[0,1]3

(
∂Ñb
∂ξ(k)

)2

dξ

)
.

As in section 4.1.2, we approximate the integral by averaging the
integrand along the 4 edges of the cubic element where ξ(k) varies

and the other two coordinates are fixed at either 0 or 1. Let Γk de-
note this set of 4 edges. For each edge γ ∈ Γk, denote the primary
node where ξ(k) = 0 by a0, and the primary node where ξ(k) = 1
by a1. Let ξ0 be the parameter of a0 and ξ1 be the parameter of
a1. Since ∂Ñb/∂ξ(k) is constant along each edge in Γk, we can
calculate it as

∂Ñb
∂ξ(k)

= Ñb(ξ1)− Ñb(ξ0) = Wa1b −Wa0b.

Then

d̃∆ =
2µVe
4h2

∑
k

∑
γ∈Γk

(Wa1b −Wa0b)
2 .

When there are no hanging nodes, this agrees with the value
in [McAdams et al. 2011] for uniform grids, d∆ = 3µVe/2h

2.

8 Constraints and Collisions

We attach the flesh to the bones using zero rest length springs em-
bedded in the elements. Let ξp be the parameter of the constrained
point, x0 be the target position for the constraint and xp be the
current deformed position of the point given by (1). The constraint
force on primary node a is

f (i)
a = −k(xp − x0)Na(ξp),

where k is the spring constant. The force differential is

δf (i)
a = −kδxpNa(ξp).

The diagonal of the stiffness matrix for the conforming node b is

d̃ = −
∂f̃

(i)
b

∂x̃
(i)
b

= k(Ñb(ξp))
2.

We also use zero rest length springs for collision repulsion forces,
but separate the force into normal and tangential components. We
use a lower spring constant in the tangential direction to allow some
sliding and simulate friction. We perform all collision and self-
collision detection using triangle meshes, accelerated with a bound-
ing volume hierarchy. For collisions with objects, we query the
closest point on the collision object for each deformed vertex xp of
the embedded triangle mesh. This yields a target position x0 and
surface normal n on the collision object.

We compute the self-intersection curves on the triangle mesh to
determine regions of self-intersection. For each deformed vertex
xp1 in the self-intersecting region, we shoot a ray in the positive
and negative normal directions to find a target triangle. Using the
barycentric coordinates of the hit point and the undeformed triangle
mesh, we compute the octant and parameter ξp2 of the target point
in material space. We then compute the deformed position of the
target point xp2 using (1). Due to differences in the number of de-
grees of freedom of the triangle mesh and the octree, and barycen-
tric interpolation versus interpolation using the element shape func-
tions, this may yield a slightly different point than the original one
computed by ray intersection. We have found that it is important to
use xp2 for consistency. We compute a normal for the self-collision
by n = (xp2 − xp1)/‖xp2 − xp1‖.

9 Parallel Implementation

We have parallelized our solver with a multithreaded shared-
memory CPU implementation. We divide our linear octree into

7
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Figure 8: One thread block. Elements in the block are color-coded
by size in red, green and yellow. Nodes in the block are shown in
blue. Ghost octants are in gray.

Algorithm 2 Computation of the Force Differential in Parallel

1: procedure FORCEDIFFERENTIAL(input octree, δx̃octree;
output δf̃octree)

2: for block in octree parallel do
3: for element e in BLOCKITERATOR(block) do

. includes ghost cells
4: δxe ← GATHERFROMOCTREE(octree, e, δx̃octree)
5: δfe ← ELEMENTFORCEDIFFERENTIAL(δxe)

6: SCATTERTOOCTREE(octree, e, block, δfe, δf̃octree)
. writes only to nodes in block

7: end for
8: end for
9: end procedure

blocks of consecutive octants which are processed in parallel. Since
the octree is sorted in Morton order, consecutive octants in the ar-
ray will tend to be adjacent spatially. When processing a block,
the thread only writes to the anchor nodes of the octants within that
block. However, the thread will need to read the values of nodes that
are outside of the block. We call an octant that contributes to the
nodes in the block, but whose anchor does not belong to the block, a
“ghost cell”. We compute the list of ghost cells for each block dur-
ing initialization. Figure 8 shows a thread block with ghost cells.
Choosing the block size involves balancing competing considera-
tions. A smaller block size facilitates load balancing, while a larger
block size reduces the number of duplicate computations due to the
ghost cells. We chose a block size of 64, but have not tuned this to
determine the optimal block size.

We use a block iterator that iterates through octants in the block
and the ghost cells. Since the ghost cells usually have smaller in-
dices than the octants in the block, we sort the ghost cells when we
generate them and iterate over the ghost cells first, followed by the
octants in the block. This order has proven to be most efficient.

An example of using this block iterator is algorithm 2 for com-
puting force differentials. The input is an array of displacements
at the conforming nodes of the octree, and the output is an ar-
ray of force differentials. We iterate over the blocks in paral-
lel. Within each block, we iterate over its ghost cells and oc-
tants. The GATHERFROMOCTREE procedure computes the dis-
placements at the 8 primary nodes of an element from the dis-
placements at the conforming nodes of the octree, implement-
ing the operation we represent as multiplication by W . The
ELEMENTFORCEDIFFERENTIAL procedure computes all of the
force differentials (elastic, constraints, collisions, etc.) for a sin-

Algorithm 3 Restriction of the Residual in Parallel

1: procedure RESTRICTRESIDUAL(input coarse octree, rfine;
output rcoarse)

. cb fnl = coarse block to fine node list

. fn ce = fine node to coarse element

. w = fine node to coarse element weights
2: for block in coarse octree parallel do
3: CLEARBLOCK(block, rcoarse)
4: for conforming node bfine in cb fnl[block] do
5: element ecoarse ← fn ce[bfine]
6: for conforming node bcoarse in element ecoarse do
7: if bcoarse in block then
8: rcoarse[bcoarse] += w[bfine][bcoarse] * rfine[bfine]
9: end if

10: end for
11: end for
12: end for
13: end procedure

gle element in a matrix-free manner as described in sections 4.2
and 8. Finally, SCATTERTOOCTREE distributes the force differen-
tials at the primary nodes of the element to the conforming nodes of
the octree, implementing the operation we represent as multiplica-
tion byW T . This procedure only writes to the nodes in the current
block.

Computing forces in parallel is implemented in a similar way to
force differentials. We also parallelize the damped Jacobi smoother
and the computation of the diagonal of the stiffness matrix using the
block iterator. Many other computations, such as the deformation
gradient and collision detection, are trivially parallelizable.

We compute the restriction of the residual in parallel as shown in
algorithm 3. As described in section 7.2, we precompute and store
the arrays fine node to coarse element and fine node to coarse
element weights. To facilitate parallelization, for each coarse block
we precompute the list of fine nodes that contribute to it, which are
stored in the array coarse block to fine node list.

For the prolongation operation, we simply iterate over the fine con-
forming nodes in parallel and compute the contributions of the
coarse conforming nodes to each fine conforming node using fine
node to coarse element and fine node to coarse element weights.
In this direction there is no need to use thread blocks since all of the
coarse conforming nodes that contribute to a given fine conforming
node can be found on a single coarse element.

We coarsen the deformation gradient once per Newton iteration as
described in section 7.3 and shown in algorithm 4. The deformation
gradient is computed at the center of the element and is therefore
an element-based quantity instead of a node-based quantity like the
forces and displacements. Since the octrees are sorted in Morton
order, all of the fine elements contained in a coarse element are
contiguous, and we can loop over the two arrays of octants simulta-
neously. We precompute the first index of the fine elements for each
coarse block and store them in coarse block to fine element start.

10 Results

We present results for two examples that demonstrate the appli-
cability of our method to different types of scenarios. The hippo
example (figure 1a, 1b) is representative of a production-level char-
acter in an animated feature film. We collected performance data
for the hippo on an animated walk cycle and also ran our solver on
an animation performance test. The Spike example (figure 1c, 1d)

8



Walt Disney Animation Studios Technical Report 2017-01

Algorithm 4 Coarsening of the Deformation Gradient in Parallel

1: procedure COARSENDEFORMATIONGRADIENT(
input coarse octree, Ffine; output Fcoarse)

. cb fes = coarse block to fine element start

. fe ce = fine element to coarse element
2: for block in coarse octree parallel do
3: element efine ← cb fes[block]
4: for element ecoarse in block do

. excludes ghost cells
5: w = 0, F = 0
6: while efine < cb fes[block + 1] do
7: if fe ce[efine] > ecoarse then
8: break
9: end if

10: F += Ffine[efine]
11: w += 1
12: efine ← next fine element
13: end while
14: Fcoarse[ecoarse] = F/w
15: end for
16: end for
17: end procedure

contains several scales of features in order to demonstrate the ef-
fectiveness of our method on domains with complex geometry that
would be infeasible to simulate with a uniform grid. Figure 9 shows
a close-up view of the fine elements around the boundary. The head
is constrained to a smaller sphere embedded in the center, which is
animated up and down and rotated side to side, before a cylindrical
collision object passes through the spikes.

Figure 9: Close-up view of Spike showing the fine elements of size
0.25 around the boundary. The fine elements are able to resolve the
complex geometry.

10.1 Memory Usage

We ran both examples with a range of cell sizes to compare the
memory usage of our octree-based method to a uniform grid imple-
mented as a 3D array data structure. We compared an octree with
a given finest cell size to a uniform grid of the same cell size. Both
the octree and the uniform grid have the same size cell around the
boundary, but with the octree, the cells become coarser towards the
interior of the object. We measured the total number of elements
and memory usage on a workstation with 192GB of RAM. Results
are plotted in figure 10 as a function of the inverse of the cell size.

For the uniform grid, the growth of both the number of elements and
memory usage is cubic as the resolution increases. As mentioned
previously, when a character is embedded in a uniform grid, many
of the grid cells are empty, which wastes memory. Combined with
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Figure 10: Number of elements and memory usage versus inverse
cell size. Memory was measured as virtual memory usage for the
solver after simulating one frame. For both the number of elements
and memory usage, the growth is cubic for the uniform grid, and
quadratic for the octree.

the cubic growth in the number of elements, this places a severe
limitation on how small of cells can be used before exhausting the
available memory.

For the octree, the growth of the number of elements and memory
usage is only quadratic as the resolution increases. This is because
we refine around the surface of the character, rather than throughout
the entire volume. In addition, we omit the empty cells in our linear
octree data structure. This allows us to achieve a very small finest
cell size without approaching the limits of available memory.

10.2 Performance

We measured the performance of our implementation using 40
threads on a 40 core 2.20GHz Intel Xeon E5-2698 v4 workstation
with 64GB of RAM. Our code was vectorized using AVX instruc-
tions. Figure 11 plots the average simulation time per frame as a
function of the inverse cell size for the hippo on an octree and a
uniform grid. For the largest cell size of 1.0, the uniform grid had
209k elements and simulated in an average of 0.367 seconds per
frame. The octree with a finest cell size of 1.0 had 101k elements
and simulated in an average of 0.352 seconds per frame. For moder-
ate to large cell sizes, the overhead of the octree is compensated for
by the reduction in the number of elements, and the total simulation
times for the octree are slightly faster than the uniform grid.

However, as the cell size decreases, the octree simulations become
significantly faster than the uniform grid. As shown in figure 12,
the increase in simulation times is linear in the number of elements
for both the uniform grid and octree. This is a consequence of our
use of a multigrid method, which has linear scaling in the number of
unknowns in the ideal case. Therefore, the simulation times inherit
the cubic and quadratic growth rates in the number of elements, as
can be observed in figure 11.

Due to extreme memory usage, the smallest possible cell size for
the uniform grid was 1/3.5, corresponding to 8.4 million elements
and an average simulation time of 10.8 seconds per frame. At the
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Figure 11: Average simulation times per frame versus inverse cell
size for the hippo example. The growth is cubic for the uniform
grid, and quadratic for the octree.
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Figure 12: Average simulation times per frame versus number of
elements for the hippo example. For both the uniform grid and
octree, the growth is linear in the number of elements. The overhead
incurred by the octree is offset by the fewer number of elements for
the same cell size, compared to the uniform grid.

same finest cell size, the octree had only 1.6 million elements and an
average simulation time of 6.3 seconds per frame. It was possible
to run octree simulations with even smaller cell sizes, down to a
finest cell size of 1/8, corresponding to 8.9 million elements and an
average simulation time of 31.0 seconds per frame.

We ran the Spike example on an octree with a smallest cell size of
1/4 (shown in figures 1c and 9), resulting in 3.1 millions elements.
It was not feasible to run this simulation using a uniform grid, and
larger cell sizes were insufficient to capture the thin features of the
geometry. Due to the highly flexible and unconstrained motion of
this example, it was necessary to solve to higher tolerance than re-
quired for a more typical character such as the hippo. Insufficient
convergence is manifested as artificial damping on the motion of
the thin features. We set the maximum number of Newton steps
to 20 for this example, compared to a more typical value of 10.
Over 119 frames of simulation, this example averaged 11.4 New-
ton steps per frame. We also set the maximum number of multigrid
preconditioned CG iterations per Newton step to 20, compared to a
typical value of 3. With these settings the average simulation time
per frame was 26.2 seconds. With a maximum of 10 Newton steps
per frame and 3 MGPCG iterations per Newton step, the average
simulation time per frame was 8.8 seconds, but some numerical
damping could be observed.

10.3 Parallel Scalability

To measure the parallel scalability of our method, we ran the hippo
example with a finest cell size of 1/2.5 (shown in figure 1a), re-
sulting in 765k elements, on 1, 2, 4, 8, 16, 24, 32 and 40 threads.
Results are shown in figure 13, compared to the ideal linear scaling.
The parallel efficiency is above 0.90 for up to 16 threads, and we

2
4
8

16
32
64

128

1 2 4 8 16 32

Se
co

nd
s

/F
ra

m
e

Threads

Hippo Octree
Ideal Linear

Figure 13: Average simulation times per frame versus number of
threads for the hippo example on an octree. We achieve near linear
scaling in the number of threads.

still achieve a parallel efficiency of 0.75 for 40 threads.

10.4 Convergence

To measure the convergence of our method, we performed a qua-
sistatic simulation of a cube of 256 units per side using an octree
with a finest cell size of 1 unit per side along the boundary. The 8
corner elements of the cube were constrained, and the position of
each unconstrained node was randomly displaced by an amount in
the range [−100, 100] in each dimension. We measured the con-
vergence back to the rest state. In order to isolate the convergence
of the linear solver, only one Newton iteration was used. We com-
pared three different linear solvers: conjugate gradient (CG), multi-
grid (MG) and multigrid-preconditioned conjugate gradient (MG-
PCG). For both MG and MGPCG, we used 7 multigrid levels and a
damped-Jacobi smoother with a damping coefficient of 0.857 , with
one smoothing iteration per multigrid level. The coarsest multigrid
level was solved with 16 damped-Jacobi iterations. For MGPCG,
one V-cycle of MG was used as a preconditioner each CG iteration.

Figure 14 shows the reduction in the max norm of the error versus
the time in seconds. In our application, this is the most appropriate
measurement of convergence, as a large error in any component of
the position will be visually apparent, even if the overall error as
measured by the energy norm or l2 norm is small. CG without a
preconditioner is seen to converge very slowly, and in fact the max
norm of the error actually increases for the first few iterations, even
while the energy norm of the error is decreasing. MGPCG out-
performs MG, especially as the number of iterations increases. As
shown in figure 15, MGPCG converges visually in fewer iterations
than MG. Each MGPCG iteration is slightly more expensive than
a MG iteration. But the added expense of the MGPCG iteration
is more than compensated for by the improved convergence rate,
and the MGPCG method still converges fastest when measured in
wall-clock time.

11 Discussion

In our method the octree is constructed in an initialization step and
does not change during the course of the simulation. Adapting the
octree in response to the simulation would increase accuracy in ar-
eas of high deformation, for example due to collisions. We also do
not support topology changes during the simulation such as cutting
or tearing. In our current implementation, such changes would re-
quire an expensive re-initialization of the multigrid hierarchy and
other data structures. Incrementally updating these data structures
without sacrificing the efficiency of our method is an area of future
work.

The derivation of our method is intimately tied to the equations
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Figure 14: Relative reduction of the max norm of the error versus
time in seconds for CG, MG and MGPCG. Each marker is one it-
eration of the method. Times are reported for a single thread on a
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Figure 15: Convergence of multigrid linear solver with a random
initial guess by number and type of iterations. The corners of the
cube are constrained.

of corotational linear elasticity. Another area of future work is
to extend the method to other nonlinear constitutive models, in-
cluding incompressible and anisotropic materials. Anisotropic ma-
terials are important for modeling the direction of muscle fibers.
But the convergence of multigrid methods suffers in the presence
of anisotropy unless more sophisticated smoothers, such as line or
plane smoothers, are used. Using more expensive smoothers may
be detrimental to efficiency and parallelism.

In computer animation, it is often desirable to change the rest state
of the object over time in order to achieve artistic effects. This
also occurs in the real world, where the rest state may change due
to plasticity. However, the assumption that the rest state of each
element is a regular hexahedron is deeply built into our method and
is the basis for much of its efficiency. Supporting these types of
effects is an interesting challenge.

We have focused on a parallel shared-memory CPU implemen-
tation. Our results show the high parallel scalability of our
method, but the parallelism is limited by the number of cores on
a single workstation. Therefore, it may be worthwhile to pur-
sue a distributed-memory or GPU implementation to achieve even
greater parallelism.

Our method combines the benefits of an adaptive discretization of
corotational linear elasticity with the efficiency of methods previ-
ously only applicable to regular grids. This enables the practical
simulation of highly complex and detailed geometry. We are ex-

cited about both the potential and challenges of the integration of
physical simulation into animation workflows that is made possible
by highly efficient solvers.

Acknowledgments

The authors would like to thank Nicholas Burkard, Heather Pritch-
ett and Nicklas Puetz for help with the hippo example.

References

BOUAZIZ, S., MARTIN, S., LIU, T., KAVAN, L., AND PAULY, M.
2014. Projective dynamics: Fusing constraint projections for fast
simulation. ACM Trans. Graph. 33, 4 (July), 154:1–154:11.

BRAESS, D. 1986. On the combination of the multigrid method
and conjugate gradients. In Multigrid Methods II, W. Hackbusch
and U. Trottenberg, Eds., vol. 1228 of Lecture Notes in Math.
Springer Berlin Heidelberg, 52–64.

BURSTEDDE, C., WILCOX, L., AND GHATTAS, O. 2011. p4est:
Scalable algorithms for parallel adaptive mesh refinement on
forests of octrees. SIAM J. Comput. 33, 3, 1103–1133.

CHAN, T. M. 2002. Closest-point problems simplified on the
RAM. In Proc. Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, SODA ’02, 472–473.

CLUTTERBUCK, S., AND JACOBS, J. 2010. A physically based
approach to virtual character deformations. In ACM SIGGRAPH
2010 Talks.

COMER, S., BUCK, J., AND CRISWELL, B. 2015. Under the
scalpel - ILM’s digital flesh workflows. In ACM SIGGRAPH
2015 Talks, 10:1–10:1.

DICK, C., GEORGII, J., AND WESTERMANN, R. 2011. A hexa-
hedral multigrid approach for simulating cuts in deformable ob-
jects. IEEE Trans. Vis. Comput. Graphics 17, 11 (Nov), 1663–
1675.

FLAIG, C., AND ARBENZ, P. 2012. A highly scalable matrix-free
multigrid solver for µFE analysis based on a pointer-less octree.
In Large-Scale Scientific Computing, I. Lirkov, S. Margenov, and
J. Waniewski, Eds., vol. 7116 of Lecture Notes in Comput. Sci.
Springer Berlin Heidelberg, 498–506.

FRATARCANGELI, M., TIBALDO, V., AND PELLACINI, F. 2016.
Vivace: A practical Gauss-Seidel method for stable soft body
dynamics. ACM Trans. Graph. 35, 6 (Nov.), 214:1–214:9.

GEORGII, J., AND WESTERMANN, R. 2010. A streaming ap-
proach for sparse matrix products and its application in Galerkin
multigrid methods. Electron. Trans. Numer. Anal. 37, 263–275.

IRVING, G., KAUTZMAN, R., CAMERON, G., AND CHONG, J.
2008. Simulating the devolved: Finite elements on WALL•E. In
ACM SIGGRAPH 2008 Talks, 54:1–54:1.

ISAAC, T., BURSTEDDE, C., AND GHATTAS, O. 2012. Low-cost
parallel algorithms for 2:1 octree balance. In Parallel Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th Int., 426–437.

KAUTZMAN, R., CHONG, J., AND COLEMAN, P. 2012. Stable,
art-directable skin and flesh using biphasic materials. In ACM
SIGGRAPH 2012 Talks.

KAUTZMAN, R., WISE, B., YU, M., KARLSSON, P., HESSLER,
M., AND WONG, A. 2016. Finding Hank: Or how to sim an
octopus. In ACM SIGGRAPH 2016 Talks, 61:1–61:2.

11



Walt Disney Animation Studios Technical Report 2017-01
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TORRES, R., RODRÍGUEZ, A., ESPADERO, J. M., AND OTADUY,
M. A. 2016. High-resolution interaction with corotational coars-
ening models. ACM Trans. Graph. 35, 6 (Nov.), 211:1–211:11.

WANG, H., AND YANG, Y. 2016. Descent methods for elastic
body simulation on the GPU. ACM Trans. Graph. 35, 6 (Nov.),
212:1–212:10.

WANG, W. 2000. Special bilinear quadrilateral elements for locally
refined finite element grids. SIAM J. Sci. Comput. 22, 6, 2029–
2050 (electronic).

12

http://arxiv.org/abs/1402.5938v1

